

43RD MEETING OF THE ASTRONOMICAL SOCIETY OF INDIA

ABSTRACT BOOK

HOSTED BY NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA

15-19 FEBRUARY 2025

Table of Contents Table of Contents

Speakers	Title	Page No.
Sunday, 16th Febr	ruary 2025	
Plenary Session I [Ch	airperson: G. C. Anupama]	1
Rajeshwari Dutta	Probing the invisible cloak of gas around galaxies - the Circumgalactic Medium	1
Shasvath Kapadia	Rates of gravitational-wave sources and properties of their associated GRB counterparts	1
Sun, Solar System, Ex	coplanets and Astrobiology I [Chairperson: S. P. Rajaguru]	2
Srinjana Routh	On the possibility of using Polar Filaments as precursors to understanding the solar cycle using historical data	2
Puja Majee	Unveiling the Coronal Condition for Generation of Type-II Solar Radio Bursts through MHD Simulations and Radio Imaging	2
Sushree Sangeeta Nayak	Flare ribbon dynamics using MHD simulation	3
Samriddhi Sankar Maity	Reconnection Flux Evolution in Erupting Magnetic Flux Ropes - perspectives from Observations and MHD Simulations	3
Tariq Ahmad Mir	Significant first digit distribution of Coronal Mass Ejections characteristics	4
Soham Dey	Polarization Characteristics of Active Solar Radio Emissions: Insights from SKAO Pathfinders and Precursors	4
Dibya Kirti Mishra	Automatic Detection of Plages using Hand-drawn Suncharts from Kodaikanal Solar Observatory Employing Machine Learning Technique	5
Stars, Interstellar Me	dium, and Astrochemistry in Milky Way I [Chairperson: Himadri Sekhar Das]	6
Amit Pathak	Spectroscopy of Interstellar Polycyclic Aromatic Hydrocarbons (I)	6
Namrata Rani	Formation of Thioacetaldehyde and Dithiol in the Interstellar Medium: Mechanisms and Binding Energy Analysis	6
Shivam Kumaran	Segmentation and deblending of filaments and dense cores in the Interstellar medium using CNN and explainable-AI	7
Atanu Koley	ALMA-IMF XXX: C18O (J = 2–1): Measurements of turbulence in 15 massive protoclusters	7
Shridharan Baskaran	A New Look at Protoplanetary Disk Accretion: Mid-Infrared HI Line Analysis from JWST-MIRI	8
Gautam Das	Introducing Time Evolution into a Parameterised YSO Accretion Disk Model and Predicting Changes in Observational Signatures	8
High Energy Phenome	ena, Fundamental Physics and Astronomy I [Chairperson: Shasvath Kapadia]	9
Yogesh Maan	Origin and Environment of Fast Radio Bursts (I)	9
Yash Bhusare	Exploring the Local Environments of Repeating FRBs with uGMRT Observations	9
	Probing Fast Radio Bursts using Deep Learning and GMRT	10
Ajay Kumar		
Ajay Kumar Mukul Bhattacharya	Fast radio bursts: source properties, emission mechanism and cosmological applications	10
	Fast radio bursts: source properties, emission mechanism and cosmological applicationsScientific Highlights from the IceCube Neutrino Observatory	10 11
Mukul Bhattacharya	Fast radio bursts: source properties, emission mechanism and cosmological applications	-
Mukul Bhattacharya Paras Koundal Debabrata Deb	Fast radio bursts: source properties, emission mechanism and cosmological applicationsScientific Highlights from the IceCube Neutrino ObservatoryThe Second Data Release of InPTA: Precise Timing of MSPs and Implications for Gravitational Wave Detection	11
Mukul Bhattacharya Paras Koundal Debabrata Deb	Fast radio bursts: source properties, emission mechanism and cosmological applicationsScientific Highlights from the IceCube Neutrino ObservatoryThe Second Data Release of InPTA: Precise Timing of MSPs and Implications	11

Aniruddha	GLANCE: Gravitational Lensing Authenticator using Non-modelled Cross-	13
Chakraborty	correlation Exploration in Search for Lensed GW Signals	13
Shreya Mukherjee	Study of Baryonic Effects on Matter Power Spectrum, and Dark Energy Equation of State Parameter using Cosmic Shear	
Ayan Nanda	Self-Similarity of Halo Shapes in Cosmological Simulations	14
Trupti Patil	Dynamic Dark Energy and the Curvature: A Journey through Datasets	14
Facilities, Technologie	es and Data science I [Chairperson: P. K. Mohanty]	15
Sanmoy Bandyopadhyay	Integral Adaptive Thresholding Inspired Solar Filament Detection	15
Anuraag Arya	Deep space navigation with X-ray pulsars	15
Prajwel Joseph	Arivu: Regenerated High-Level UVIT Data Products	16
Aparna Sekhar E R	Modeling Optical Performance in Integrated Model of Segmented Mirror Telescopes	16
Nagendra Neerudu	Scientific Ballooning in India: Recent Activities and Developments at TIFR Balloon Facility	17
Sakram Korra	Recent Developments in Scientific Ballooning and Utilization of Hydrogen as a Lifting gas for Stratospheric Balloons	17
Phanindra D. V. S.	Fabrication and Characterization of Liquid Crystal Retarders	18
Talk by Awardees [Ch	airperson: Sarita Vig]	19
B. S. Shylaja	ASI Zubin Kembhavi Award lecture - Outreach - after in-reach	19
Anupam Bhardwaj	Professor M. K. Vainu Bappu Gold Medal lecture - Stellar route to the Hubble Constant	
Joe Philip Ninan	Professor M. K. Vainu Bappu Gold Medal lecture - Developing new instrumentsfor expanding the discovery space	
Nirupam Roy	<i>Laxminarayana & Nagalaxmi Modali Award lecture -</i> Atomic ISM in galaxies, near and far: Results & Surprises	20
Devojyoti Kansabanik	Justice Oak Award for Outstanding Thesis in Astronomy lecture - Remote sensing the magnetic field of coronal mass ejections in the heliosphere using radio observations	20
Monday, 17th Feb	ruary 2025	
Plenary Session II (Ch	airperson: Liton Majumdar]	21
Umesh R. Kadhane	Laboratory investigation of nitrogenated aromatics and their role in understating astrochemical evolution of organics	21
Sudha Rajamani	The Astrobiological narrative of life's origin on the 'Pale Blue Dot'	21
Priyanka Chaturvedi	Exoplanet Characterization: From Jupiters to Earths - The Way Forward	21
Sun. Solar System, Fx	oplanets and Astrobiology II+Thesis [Chairperson: Dipankar Banerjee]	22
Komal Choraghe	The magnetospheric response to different near-earth space weather conditions (Thesis talk)	22
Manoj Varma Sri Vatchavai	The Solar Ultra-Violet Imaging Telescope: Detector characterization and on- board processing for flare studies (Thesis talk)	22
Vikas Soni	The Effect of Metallicity and Vertical Mixing on the Abundance of Major H-C-N- O-bearing Species in the Atmosphere of Exoplanets (Thesis talk)	23
Sindhuja Gunaseelan	Comparative Study of Helium-Rich and Helium-poor Events Observed by the High-Energy Telescope (HET) Onboard Solar Orbiter	23

Choro Internatellar March	ium and Astrophomistry in Mills May II + Thesis following the state	
Stars, Interstellar Med Purvankara]	lium, and Astrochemistry in Milky Way II + Thesis [Chairperson: Manoj	25
Saumya Gupta	Decoding Low Mass Star Formation: The Role of Cluster Environment (Thesis talk)	
Ranjan Kumar	Study of UV-bright stars in Galactic globular clusters using Ultraviolet Imaging Telescope (UVIT) observations (Thesis talk)	26
Belinda Damian	From stars to brown dwarfs: A journey through diverse star forming worlds (Thesis talk)	26
Gourav Banerjee	Optical spectroscopy of classical Be stars in the Galaxy (Thesis talk)	27
Prerana Biswas	Unravelling the kinematics, dynamics and structure of galaxies using HI - 21cm observation (Thesis talk)	27
High Energy Phenome Kharb]	na, Fundamental Physics and Astronomy II + Thesis [Chairperson: Preeti	28
Vivek Kumar Jha	Investigating the Nature and Structure of Inner Regions in Active Galactic Nuclei (Thesis talk)	28
Dimple	<i>Justice Oak Best Thesis Award, Honorable Mention talk</i> - Multiwavelength studies of gamma-ray bursts and their associated counterparts	28
Soumen Mondal	Observational imprints of accretion disk on observed gravitational wave data from LISA	29
Gaurav Waratkar	Low-latency infrastructure for rapid dissemination of LIGO-Virgo-KAGRA gravitational-wave alerts for Multi-Messenger Astronomy	29
Abinash Suklabaidya	baidya Linking Polarization and Photometry: Advancements in Asteroid Diameter Estimation	
Galaxies and Cosmolo	ogy II [Chairperson: Sachindra Naik]	31
Anishya Harshan	Can Dwarf Galaxies Reionise the Universe?	31
Abhirup Datta	uGMRT constraints on the redshifted HI 21-cm signal power spectrum at $z = 9$ (EoR)	31
Ananda Hota	GMRT observation of objects discovered by Indian citizen scientists since 2013	32
Masroor Bashir	Testing Statistical Isotropy and Gaussianity of ACT DR6 Convergence data using Morphological statistics	32
Mohit Raj Sah	Cosmology of the supermassive black holes using anisotropic nHz gravitational wave background	33
manager and the second		
racilities, lechnologie	es and Data science II [Chairperson: Vikram Rana] GARUDA: A Deep Learning based automated radio data analysis pipeline for	34
Abhinav Narayan	the GMRT	34
Viren Mandaogane	LiBRA: A Novel Low Frequency Wideband Antenna for Radio Astronomy	34
Amar Nath	QMIST: A Software Pipeline for the Detection of Quasi-periodic Microstructures in Pulsar Emission	35
Keerthipriya Sathish	Dual polarised Fantail dipole Antenna Design for APSERa an S-band Precision cosmology experiment	35
Arul Pandian B.	A Novel LPDA Array for 130 - 350 MHz Pulsar observation at Gauribidanur - Initial Results	35
<u>Sun, Solar System, Ex</u>	oplanets and Astrobiology III [Chairperson: Sudha Rajamani] Sulfuric Acid and Sulfur Dioxide vapor concentrations in the lower atmosphere	36
Soumyaneal Banerjee	of Venus using the Radio Occultation Technique	36
Saugata Barat	First observations of young transiting planet atmospheres: Uncovering signatures of early evolution	36

Prakruti Sudarshan	How stellar irradiation affects the structure of a planet forming disk	37
Anuroop Dasgupta	The Ophiuchus Disk Survey Employing AI MA (ODISEA): Complete Size	
Trisha Bhowmik	Understanding planet and satellite formation with ALMA and VLT	
Vignesh Vaikundaraman	Dust growth in wind-driven protoplanetary disks	38 38
Ushasi Bhowmick	Lightcurve Inversion: Analyzing the extent of feature embedding of a two- dimensional projected shape on its transit lightcurve	39
<u>Stars, Interstellar Mec</u>	lium, and Astrochemistry in Milky Way III [Chairperson: Drisya Karinkuzhi]	40
Saikhom Pravash Singh	Dust grain alignment and disruption mechanisms in G34.43+0.24 using thermal dust polarization observations from JCMT/POL-2	40
Bhaskarjyoti Barman	Insights from Molecular Clouds: Turbulence, Magnetic Field and other Physical Parameters	40
Anindya Saha	Direct observational evidence of multi-epoch massive star formation in G24.47+0.49	41
Amal George Cheriyan	Probing the interplay of jets and H II regions in RAFGL2591: Insights from radio, infrared and sub/millimeter observations	41
Debangan Maji	Cool phase temperature of atomic hydrogen in the Galactic centre region	42
Khushbu K.	Self-consistent modelling of the ionized and neutral gas in PN NGC 6445	42
Aayushi Verma	Investigating the Star-forming Sites in the Outer Galactic Arm	43
Samrat Biswas	Multi-wavelength photo-polarimetric study of the intermediate age open	
Poojapriyatharsheni J.	Diffuse Ionized Gas in the Cygnus X region and inner Galactic Plane	44
High Energy Phenome	na, Fundamental Physics and Astronomy III [Chairperson: G. C. Anupama]	45
Judhajeet Basu	"Shock"-ing results from M31: Detailed analysis of the slow classical nova AT2023tkw (GIT20230919aa)	45
Anjasha Gangopadhyay	A thourough investigation on the evolution of Helium rich interacting (Ibn) supernovae	45
Shatakshi Chamoli	Multiwavelength study of novae in M31	46
Devanand P U	X-Ray Spectral Variability of Thirteen TeV High Energy Peaked Blazars with XMM-Newton	
Athira M Bharathan	Probing High-Energy Emission Mechanisms in Blazars through X-ray Polarization with IXPE	47
Susmita Das	X-Ray Spectral Evolution and Fourier Time Lags in Two HSP Blazars	47
Priyesh Kumar Tripathi	Isolated black holes accreting through dense environments	47
Pragyan Pratim Bordoloi	Identification and modelling of optically thin inverse Compton scattering in the prompt emission of GRB131014A	48
0 10 10 1		
	ogy III [Chairperson: Abhirup Datta]	49
Rakshit Chauhan	Effect of interaction on the star forming properties of dwarf galaxies	49
Chandan Watts	A Tale of NGC 3785: The formation of an ultra-diffuse galaxy at the end of the longest tidal tail	49
Saili Keshri	Kinematic Misalignments and Remnant Features in Early-Type Galaxies: Insights from SDSS-MaNGA Data	50
outil Koshin		50
	Origin of hot gas in the Circumgalactic Medium of the Milky Way	
Mukesh Singh Bisht	Origin of hot gas in the Circumgalactic Medium of the Milky Way Tracing Hierarchical Star Formation out to Kiloparsec Scales in Nearby Galaxies	51
Mukesh Singh Bisht Shashank Gairola	Tracing Hierarchical Star Formation out to Kiloparsec Scales in Nearby	
Mukesh Singh Bisht Shashank Gairola Tanya Tripty Atharva Mirashi	Tracing Hierarchical Star Formation out to Kiloparsec Scales in Nearby Galaxies	51

Facilities, Technologi	es and Data science III [Chairperson: Blesson Mathew]	53	
Vikram Rana	xram Rana X-Ray Astronomy: a Unique Observational Window to Study Astronomical Sources (I)		
Tarun Bangia	Development and Prototype Testing of a Monitoring System for 3.6m DOT Equipment		
Kuntal Misra	Initial results from the 4-m International Liquid Mirror Telescope (ILMT)		
Kiran Jayasurya	GEM-TPC Soft X-ray Polarimeter: Demonstration of Polarimetric Capability	54	
Prasad Neelam	The 2.5M Telescope and backend instruments suite	54	
Kalpesh Chillal	Challenges in Upgradation and Testing of IFOSC CCD Controller	55	
Rahul Gopalakrishnan	Data processing pipeline of SUIT onboard Aditya-L1	55	
Manish Chauhan	Long-term analysis of meteorological parameters over Indian astronomical sites	55	
Thubstan Rinchen	Design & Development of mechanism for Mirror Panel Maintenance for MACE Telescope	56	
Tuesday, 18th Feb	oruary 2025		
Plenary Session III [C	hairperson: Jessy Jose]	57	
S. P. Rajaguru	Solar Interior Dynamics and Helioseismology	57	
Manoj Purvankara	Star and Planet Formation Studies in the New Millennium: Key Insights from Infrared Space Missions	57	
Yogesh Joshi	Exploring Open Clusters to Unravel Galactic Structure	58	
Sun, Solar System, Ex	coplanets and Astrobiology IV [Chairperson: Priyanka Chaturvedi]	59	
Sourav Chatterjee	Dynamical Processes Can Explain the Orbital Architectures of Kepler's Multis	59	
Jagabandhu Panda	Martian clouds and their association with atmospheric dust distribution, dynamics and thermodynamics		
Shraddha Biswas	Investigating the Potential Causes of Transit Timing Variations for TrES-2b in the Era of TESS		
Anirban Mandal	Analysing the growth and evolution of two regional dust storms using MRO- MCS, Curiosity, and Perseverance observations	60	
Store Interetellar Mar	dium, and Astrochemistry in Milky Way IV [Chairperson: Devendra Ojha]	61	
Drisya Karinkuzhi Ashish Kalyan	Intermediate Neutron capture process (I) VLBA Pulsar Astrometry of J0332+5434 and J1136+1551: Insights into Ionospheric Distortions	61 61	
Rahul Sharan	Detection of nulling in millisecond pulsars using uGMRT observations	62	
Zenia Zuraiq	Explaining unusual observations using magnetized white dwarfs	62	
List Frank Discourse	ena, Fundamental Physics and Astronomy IV [Chairperson: Indranil		
	and, rundamentat russes and Astronomy iv Lonarperson. maranit	63	
Chattopadhyay] Bhargav Vaidya	Simulating Astrophysical and Space Plasma Jets in the Era of Multi-messenger Astronomy	63	
<u>Chattopadhyay]</u> Bhargav Vaidya	Simulating Astrophysical and Space Plasma Jets in the Era of Multi-messenger		
<u>Chattopadhyay]</u> Bhargav Vaidya Vivek Baruah Thapa	Simulating Astrophysical and Space Plasma Jets in the Era of Multi-messenger Astronomy Inferring the Equation of State for Dense Matter in Neutron Stars: A Bayesian	63	
<u>Chattopadhyay]</u> Bhargav Vaidya Vivek Baruah Thapa	Simulating Astrophysical and Space Plasma Jets in the Era of Multi-messenger Astronomy Inferring the Equation of State for Dense Matter in Neutron Stars: A Bayesian Perspective on Antikaon Condensation	63 63	
<u>Chattopadhyay]</u> Bhargav Vaidya Vivek Baruah Thapa Santabrata Das	Simulating Astrophysical and Space Plasma Jets in the Era of Multi-messenger AstronomyInferring the Equation of State for Dense Matter in Neutron Stars: A Bayesian Perspective on Antikaon CondensationRelativistic hot accretion flows around black holesECLIPSE DOES NOT HIDE, BUT REVEALS: Comprehensive X-ray Reprocessing	63 63 63	

Galaxies and Cosmol	ogy IV [Chairperson: Yogesh Chandola]	66
Shivam Burman Unveiling Galactic Magnetism: Probing Magnetic Field Profiles with Background Quasars		66
Pralay Biswas	Identification and study of the Optically invisible galaxy population with JWST	66
Salmoli Ghosh	Understanding Radio-quiet AGN Jet Morphologies and Feedback Mechanisms from Parsec to Kiloparsec Scales	67
Pradyumna Sadhu	Satellites galaxy abundances in clusters of galaxies within ACDM: from ultrafaints to ellipticals	67
Anilkumar Tolamatti	Observations of high redshift gamma-ray blazars with MACE	67
WGGE Session [Chai	rperson: Arunima Banerjee]	68
Jessica Dempsey	Solving the science equity problem: psychology and statistics	68
Stars, Interstellar Me	dium, and Astrochemistry in Milky Way V [Chairperson: T. Sivarani]	69
Lupamudra Sarmah	Asteroseismic insights into Barium stars: Probing companion information and formation pathways	69
Susmita Das	An updated theoretical scenario of BL Herculis stars	69
Muhammed Riyas A.	Dissecting r-Process Elemental Abundance Trends in CEMP Subclasses	70
Wednesday, 19th	February 2025	
Plenary Session IV [C	Chairperson: Ajit Mohan Srivastava]	71
P. K. Mohanty	Recent results from the GRAPES-3 Experiment	71
Posters		
Posters in Sun, Solar	System, Exoplanets, and Astrobiology	72
Posters in Stars, Inter	rstellar Medium, and Astrochemistry in Milky Way	89
Posters in High Energ	y Phenomena, Fundamental Physics and Astronomy	106
Posters in Galaxies a	nd Cosmology	129
Posters in Facilities,	Technologies and Data science	154
Posters in Education,	Outreach and Heritage	165

16th February 2025	
Plenary Session I	
[Chairperson: G. C. Anupama]	
[Time: 11:40 – 13:00]	

ASI2025_761	Rajeshwari Dutta	Invited	
	Plenary		
Probing the invi	sible cloak of gas around galaxies - the Circum	galactic Medium	
The stellar discs of galaxies have b	een studied extensively for many years, howe	ver they represent only the tip of the	
iceberg. First proposed by astrono	mers in 1969, it is now well-established that a	all galaxies are embedded in diffuse	
gaseous haloes known as the Circ	umgalactic Medium (CGM). Over the last few	decades, significant effort has gone	
into detecting and characterizing th	ne properties of these diffuse haloes. Lying at th	ne interface between a galaxy and its	
wider environment, the CGM mod	lulates not only the accretion and ejection of	material in the galaxy, but also the	
interaction of the galaxy with the la	arger-scale environment. Moreover, the CGM i	s a major reservoir of baryons in the	
Universe, and plays a key role in the	ne star formation and evolution of galaxies. Th	erefore, in order to fully understand	
the physical processes at work w	ithin galaxies, it is crucial to have a robust ur	nderstanding of the gaseous haloes	
surrounding them. But how do we probe this diffuse gas? How is it distributed around galaxies? What do we know			
about the nature of this gas so far? How are the properties of the CGM connected with that of the galaxies and the			
environment? This talk will address these questions, and present the results from recent works in this exciting field in			
astronomy.			

ASI2025_763	Shasvath Kapadia	Invited
	Plenary	
Rates of gravitational	l-wave sources and properties of their associa	ted GRB counterparts
The synergy of Gravitational-Wav	e (GW) astronomy with electromagnetic (EN	A) astronomy promises to answer
longstanding questions in astronom	my and astrophysics. This talk will provide an	interesting and important example
involving Gamma-Ray Burst (GRB)	counterparts to compact binary coalescences	(CBCs). It is known that some, if not
all, binary neutron star (BNS) coal	lescences, and a fraction of neutron - star bl	ack hole (NSBH) mergers, produce
sufficient mass-ejection to power GRBs. However, this fraction, as well as the distribution of beaming angles of BNS-		
associated GRBs, are poorly co	nstrained from observation. I will show ho	w, by combining observations of
gravitational-waves (GWs) and Gar	mma-Ray Bursts (GRBs), we can constrain the	properties of these CBC associated
GRBs. I will first overview how the r	rate of BNSs and NSBHs can be evaluated fron	n LIGO-Virgo-Kagra (LVK) data. I will
then show how Fermi/Swift data, th	hat is post-processed and segregated into BNS	6- and NSBH- clusters with Machine
Learning, can be used to estimate t	the rate of BNS/NSBH associated GRBs. By co	mparing the GW rates with the GRB
rates, I will demonstrate how we	can place constraints on the properties of \ensuremath{G}	RB counterparts to CBCs, viz. the
beaming angles of BNS-associated	d GRBs, and the fraction of NSBHs that produc	ce GRBs. I will conclude by pointing
out the caveats of our method.		

16th February 2025 Parallel Session - Sun, Solar System, Exoplanets, and Astrobiology I [Chairperson: S. P. Rajaguru] [Time: 14:00 – 15:45]

ASI2025_116	Srinjana Routh	Contributed Talk
	Sun, Solar System, Exoplanets, and Astrobiology	•
On the possibility o	f using Polar Filaments as precursors to understanding the solar cy	/cle using historical data.
The long-term evolution	n of solar filaments is closely related to the large-scale solar cycle,	with their parameters tracing
the solar surface magnetic fields and have been long thought to contribute to the polar fields of the next cycle. In this		
study, we utilize adaptive intensity thresholding algorithm on the archival carrington maps from Meudon observatory		
and Mcintosh archive encompassing cycles 16 to 23 to extract polar filaments and their parameters, length and area,		
to see if polar filaments can be identified as precursors to the succeeding cycle strength. Our study suggests that the		
polar filament area is a possibly better parameter as a candidate for a precursor to the polar field and hence, the next		
solar cycle.		

ASI2025_342	Puja Majee	Contributed Talk	
	Sun, Solar System, Exoplanets, and Astrobiology		
Unveiling the Corona	l Condition for Generation of Type-II Solar Radio Bursts through M	HD Simulations and Radio	
	Imaging		
Metric type-II solar rad	o bursts are plasma emissions, mostly associated with CME-drive	en shocks, and hence can be	
used as remote probes	s for the kinematics and dynamics of the CMEs at lower coronal h	eights. Association with the	
potent driver of the spa	ce weather, CMEs, makes these radio emissions very interesting fr	om the perspective of space	
weather. However, not	every CME gives rise to these emissions. While the spectroscopi	c imaging studies of type-lls	
are rare, almost all hav	e revealed that the type-II sources are localized on the extended s	shock front. This implies that	
certain conditions need	d to be satisfied to generate these plasma emissions. To explore th	nis aspect, high-fidelity radio	
image-based informati	on along with EUV, whitelight observations, and coronal density	models are essential. While	
only a few studies have	been done regarding this aspect, a majority of them conclude that	for the generation of a type-	
ll emission, the shock n	eeds to be supercritical and the shock geometry needs to be quasi	-perpendicular, i.e. the angle	
between the shock nor	mal and the upstream magnetic field should exceed 450. To verif	y this, we have carried out a	
detailed comparison b	detailed comparison between high-fidelity radio images from the precursor of the low-frequency telescope of the		
Square Kilometre Arra	y Observatory, the Murchison Widefield Array (MWA) with the s	simulations from a physics-	
based, data-driven sel	based, data-driven self-consistent MHD model, Alfven Wave Solar-atmosphere Model (AWSoM) within the Space		
Weather Modeling Fra	Weather Modeling Framework (SWMF). The detailed plasma parameters provided by AWSoM allow us to identify		
expected source regions where the shock is supercritical and has a quasi-perpendicular geometry, along with the local			
plasma frequency. The	se two excellent tools thus provide all of the ingredients needed	for comparing observations	
against expectations. T	his presentation will summarize the results of this effort and mark	interesting progress toward	
understanding the con	ditions for generating type II radio emissions.		

ASI2025_418	Sushree Sangeeta Nayak	Contributed Talk	
Sun, Solar System, Exoplanets, and Astrobiology			
	flare ribbon dynamics using MHD simulation		

We have studied the properties of magnetic reconnection through flare ribbons dynamics using observations and dataconstrained magnetohydrodynamics (MHD) simulation. We have estimated the reconnection flux and reconnection flux rates using flare ribbons observed in 1600 channel in Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) of an M1.1 flare hosted by the active region 12184 on May 23, 2021 utilizing the technique developed by Qiu et al 2006. We find the reconnection flux and corresponding flux rates to be \$10^{20}\$ Mx and flux rate \$10^{18}\$ Mx/s respectively. To understand the origin of flare ribbons, we have performed an MHD simulation initiated by the non-force-free-field extrapolated field. Importantly, we have identified a three-dimensional (3D) magnetic neutral point and a flux rope in the flaring region, which are crucial to the flaring activity. The reconnection initiates at the null point. Later, the flux rope appears to reconnect at the null, which is favorable for the eruption of the filament. We trace the footpoint evolution of the field lines lying over the flare ribbons and find a significant matching between the observed flare ribbons and the evolution of footpoints computed from the MHD simulation. From the simulation, we have calculated the reconnection flux and flux rates using the pixels under these footpoints and found one order higher in comparison to their observed values. Interesting is also the enhancement of vertical current density near the flaring ribbons, a signature of successive reconnections near the null point. This is again completed by the presence of high squashing factor in the vicinity of ribbons indicating slipping reconnections of the fan field lines of the null skeleton over the ribbons. The findings from the simulation contribute toward the understandings of ribbon formation in a flaring process as well as involved magnetic reconnection.

ASI2025_623	Samriddhi Sankar Maity	Contributed Talk	
	Sun, Solar System, Exoplanets, and Astrobiology		
Reconnection Fl	ux Evolution in Erupting Magnetic Flux Ropes - perspectives from C	bservations and MHD	
	Simulations		
Coronal mass ejection	s (CMEs) are major space weather drivers, with magnetic flux rope	es (MFRs) widely recognized	
as their primary prec	ursors. Yet, the evolution of reconnection flux during MFR eru	ption remains inadequately	
understood. In this stu	dy, we develop a 3D magnetohydrodynamic (MHD) model to invest	igate the temporal evolution	
of reconnection flux ir	erupting MFRs, using both simulations and observational data.	Our initial setup includes an	
isothermal coronal atn	isothermal coronal atmosphere and a potential arcade magnetic field, with an emerging MFR introduced at the lower		
boundary. As the MFF	boundary. As the MFR ascends, it stretches and compresses the overlying magnetic field, leading to the gradual		
formation of a current sheet and ultimately to the impulsive ejection of the flux rope. We examine the reconnection			
flux evolution over two consecutive MFR eruptions while continuously emerging a twisted flux rope at the lower			
boundary. Additionally, we analyze a similar eruptive event using observational data from the Helioseismic and			
Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA). By comparing our MHD simulations with			
observations, we find that reconnection flux plays a key role in determining CME speeds, with a strong linear			
correlation between reconnection flux and MFR velocity from initiation to eruption. This simulation provides valuable			
insights into the complex dynamics of CME initiation and evolution.			

ASI2025_651	Tariq Ahmad Mir	Contributed Talk
	Sun, Solar System, Exoplanets, and Astrobiology	

Significant first digit distribution of Coronal Mass Ejections characteristics

Benford's Law (BL) is an interesting empirical phenomenon that describes how the first significant digits (FSDs) of many real-world datasets are distributed. Specifically, it states that in a wide range of data, smaller digits—like 1, 2, and 3—appear as the FSDs much more frequently than larger digits, such as 7, 8, and 9. Massive data collected from the observation of different astrophysical phenomena can provide new testing grounds for the ubiquity of this law. In this investigation, we systematically analyze the distribution of FSDs for various characteristics of Coronal Mass Ejections (CMEs) to assess the relevance of BL. The parameters examined include width, mass, acceleration, momentum, force, and kinetic energy, all of which conform to the expected FSD distribution as prescribed by BL. In contrast, the central position angle, measurement position angle, and speeds of the CMEs exhibit significant deviations from this law. These results indicate that while certain CME characteristics inherent in the numerical distributions of astrophysical phenomena. The deviations observed in above parameters may indicate complexities in the physical mechanisms at play, such as variations in solar magnetic field interactions or differences in the spatial and temporal dynamics of CMEs. By further exploring these discrepancies, we can gain deeper insights into the intricate processes that drive solar activity.

ASI2025_632	Soham Dey	Contributed Talk	
	Sun, Solar System, Exoplanets, and Astrobiology		
Polarization Chara	cteristics of Active Solar Radio Emissions: Insights from SKAO Pat	hfinders and Precursors	
Solar radio bursts are a	among the most widely studied phenomena originating in the sola	r corona, and offer valuable	
insights into the coron	al medium. Their polarization characteristics serve as tracers of	coronal magnetic fields for	
which a direct measure	e has been, traditionally, very challenging . Despite their potential,	the study of solar emissions	
at low radio frequenci	es has been constrained by both instrumental limitations and t	he lack of suitable imaging	
techniques. As a resu	lt, much of the existing research has focused on analyzing dyn	amic spectra, which, while	
informative, do not pro	vide any spatial information needed to fully explore the complex b	ehavior of these emissions.	
The advent of next-gen	eration radio telescopes, such as the Murchison Widefield Array (M	IWA), LOw Frequency ARray	
(LOFAR), and the upgra	ided Giant Metrewave Radio Telescope (uGMRT) — all precursors (or pathfinders for the Square	
Kilometer Array Obse	rvatory (SKAO) — marks a significant shift in solar radio astro	pnomy. These instruments,	
combined with advan	cements in calibration and imaging techniques, now enable hi	gh-fidelity, full-polarimetric	
imaging of solar radio b	imaging of solar radio bursts, offering new opportunities to study the dynamic emission processes with high temporal		
and spectral resolutior	i in the image plane. In this work, we present recent results from p	olarization imaging of active	
solar radio emissions (solar radio emissions using MWA, LOFAR, and uGMRT. Our findings reveal that these emissions are predominantly		
circularly polarized, w	circularly polarized, with polarization fractions that vary significantly and remain consistently lower than the		
theoretical expectations. Notably, we observe that the peaks of the polarized emission sources are often separated			
by several arcseconds to arcminutes from that for the total intensity sources, and that the polarized emission regions			
are always more compact than the corresponding total intensity source. This suggests that scattering effects may play			
a significant role in red	ucing the observed polarization. We will discuss these results and	explore their implications	

ASI2025_44	Dibya Kirti Mishra	Contributed Talk	
	Sun, Solar System, Exoplanets, and Astrobiology		
Automatic Detection of	f Plages using Hand-drawn Suncharts from Kodaikanal Solar Obse	ervatory Employing Machine	
	Learning Technique		
The Kodaikanal Solar (Observatory (KoSO), one of the oldest solar observatories, posse	sses hand-drawn suncharts	
that depict various sola	ar features such as plages, filaments, sunspots, and prominences	s, each marked with distinct	
colors. These sunchart	ts are valuable for addressing the data gap in the Ca II K dataset o	of KoSO from 1980 to 2007,	
which resulted from pl	which resulted from plate damage and changes in observational conditions after 1980, leading to a decline in data		
quality. However, hand	I-drawn suncharts, available since 1904, provide detailed represe	ntations of solar features on	
Stonyhurst grids. These charts will help fill gaps in the Ca II K data and contribute to the reconstruction of			
pseudomagnetograms by integrating information on plages and filaments. Currently, we have 6k x 6k scanned images			
of these suncharts, and we have applied a CNN-based machine learning model to calculate the center, radius, and P-			
angle from 1904 to 2007. To train the CNN model for identifying plages on the suncharts, we created a training dataset			
by detecting plages in Ca II K images. This approach will enhance the automatic identification of solar features and			
assist in analysing historical solar data.			

16th February 2025 Parallel Session - Stars, Interstellar Medium, and Astrochemistry in Milky Way I [Chairperson: Himadri Sekhar Das] [Time: 14:00 – 15:45]

ASI2025_113	Amit Pathak	Invited Talk	
	Stars, Interstellar Medium, and Astrochemistry in Milky Way		
	Spectroscopy of Interstellar Polycyclic Aromatic Hydrocarbons	(I)	
Polycyclic Aromatic H	ydrocarbons (PAHs) are an important and ubiquitous constituent	t of the interstellar medium	
(ISM) whose signature i	(ISM) whose signature is seen in a wide variety of environments. Strong emission features at 3.3, 6.2, 7.7, 8.6 and 11.2		
µm along with several v	veak features arising from PAHs have been extensively observed [1]. Recent detection of small	
cyano-PAHs has confir	med the presence of these molecules [2]. The presence of an ass	ociated molecule, fullerene	
cation, in the ISM has a	cation, in the ISM has also been confirmed [3]. It should be noted that PAHs are also pervasive in terrestrial conditions.		
In this talk I will revie	ew the observational, laboratory and theoretical studies dedica	ted to PAHs and how our	
perspective in understanding these molecules has evolved. I will discuss the signature (spectral) characteristics of			
interstellar PAHs and variations observed in the spectra. The reasons for these variations will be elaborated based on			
laboratory and theoretical spectroscopic studies. Recent results from our group will also be presented. References 1.			
Tielens A.G.G.M., 2008, ARA&A, 46, 289 2. McGuire et al., 2021, Science, 371, 1265 3. Campbell et al., 2015, Nature,			
523, 322			

ASI2025_263	Namrata Rani	Contributed Talk	
Stars, Interstellar Medium, and Astrochemistry in Milky Way			
Formation of Thioac	etaldehyde and Dithiol in the Interstellar Medium: Mechanisms an	d Binding Energy Analysis	
The chemistry behind	sulfur depletion in cold, dense molecular clouds remains poorly ur	nderstood, with a significant	
discrepancy between e	elemental sulfur abundance and detected molecular species in the	e interstellar medium (ISM).	
In this study, we explor	e the formation of thioacetaldehyde—the sulfur analogue of aceta	ldehyde—through both gas-	
phase reactions and s	surface-mediated processes on amorphous solid water (ASW)	ice grains. Using high level	
quantum-chemical me	thods and the Binding Energy Evaluation Platform (BEEP), we iden	tify favourable reaction sites	
on ASW, with thioeth	nanol acting as a precursor. Interestingly, our computations r	evealed an unplanned but	
thermodynamically m	nore stable by-product, dithiol, alongside the formation of	f thioacetaldehyde. While	
thioacetaldehyde is fa	vorable both kinetically and thermodynamically, the unexpected	formation of ethane-di-thiol	
highlights the potential	for multiple sulfur-containing species to coexist under ISM condition	ions. To predict where these	
molecules might resid	le, we conduct binding energy calculations to determine their o	distribution across different	
snowlines. To gain de	eeper insights, we also compare the binding energies of thioa	cetaldehyde and precursor	
thioethanol with their c	thioethanol with their oxygen analogues, such as acetaldehyde and ethanol. This comparison helps us understand the		
differences in adsorpt	differences in adsorption behavior and chemical stability between oxygen- and sulfur-bearing molecules on dust		
grains. The binding en	ergy data suggest that the molecular adsorption strength may va	ry across snowline regions,	
potentially leading to t	ne segregation or co-location of sulfur and oxygen analogues on in	terstellar dust grains. These	
findings contribute to the understanding of complex sulfur reservoirs in the ISM, proposing a new chemical network			
for sulfur-bearing organ	for sulfur-bearing organic molecules. Additionally, the potential future detection of both thioacetaldehyde and dithiol,		
much like acetaldehyd	e, would provide further evidence of sulfur's incorporation into cor	mplex molecular structures,	
bridging the gap betwe	en elemental sulfur and observed molecular forms in space.		

ASI2025_391	Shivam Kumaran	Contributed Talk
	Stars, Interstellar Medium, and Astrochemistry in Milky Way	

Segmentation and deblending of filaments and dense cores in the Interstellar medium using CNN and explainable-AI.

The cold matter in the interstellar medium resides within complex filamentary structures. Submillimetre/Far-infrared observations reveal close association of filaments with dense-cores in star-forming regions, supporting the theory of filament fragmentation to form pre-stellar cores. Intersection of the filaments forms hub-filament systems acting as the origin of high-mass star formation. Large scale identification and characterisation of ISM filaments is essential to establish the link between diffused ISM and the stellar initial mass function. In this work we aim to generate a comprehensive catalogue of filaments and the embedded dense-cores. We develop CNN based model which utilizes parallel architecture for simultaneous extraction of filaments and dense-cores, requiring no manual parameter tuning. The filament identification branch is a derivative of U-Net model and is trained using DisPerSE filaments on Herschel Gould Belt Survey column density maps. It is necessary to deblend dense-cores from filaments as their sharp extremas create breaks in otherwise continuous filament skeleton. Additionally, the blended nature of cores with no clear boundary, makes segmentation based supervised learning difficult. To overcome this, We investigate the use of R-CNN and Grad-CAM based explainable-AI for dense-cores segmentation. A binary classifier is trained on HGBS dense-cores catalogue, to predict the probability of input region containing a source, achieving a validation accuracy of >84%. Grad-CAM is used to generate segmentation map from the classifier predictions. We extract filamentsskeleton and dense-cores for Herschel's HGBS and HOBYS surveys. The radial density profile of model-extracted and DisPerSE filaments have a similar distribution in lower dimension principle-component space. We aim to make the model robust and instrument-agnostic in order to generate filament skeleton map on various galactic -plane surveys in order to create an exhaustive catalogue of hub-filament systems.

ASI2025_462	Atanu Koley	Contributed Talk
Stars, Interstellar Medium, and Astrochemistry in Milky Way		
ALMA-IM	F XXX: C18O (J = $2-1$): Measurements of turbulence in 15 massive	protoclusters
ALIMA-IMF is a large pr	ogram of the Atacama Large Millimeter/submillimeter Array (ALMA	() that aims to determine the
origin of the core mass	function (CMF) of fifteen massive Galactic protoclusters (\sim 1.0 – 2	25.0 × 10^3 M⊙, estimated
from the dust continuu	m emission) located towards the Galactic plane. In addition, the o	bjective of the program is to
obtain a thorough unde	rstanding of their entire physical and kinematic properties. Here we	e study the turbulence in the
protoclusters with C1	80 (2–1) line using sonic Mach number (M_s) analysis and l	inewidth-size relation. The
probability distribution	function (PDF) of the sonic Mach number (M_s) for all of these regio	ns exhibits a similar pattern,
peaking between \sim 4 a	nd \sim 7 and then extending up to \sim 30. Values of the sonic Mach r	numbers (M_s) indicate that
turbulence within the p	protoclusters is supersonic in nature. We also compare the non-t	hermal velocity dispersions
(σ_n th) obtained from	the C18O (2–1) line with the non-thermal line widths (σ_n th) of t	he cores obtained from the
DCN (3-2) line and ob	serve that on average, the non-thermal line widths (onth) of the c	ores are approximately half
compared to the non-thermal line widths (σ_{nth}) obtained from the C18O (2–1) lines. This suggests that supersonic		
turbulence dissipates towards the cores, which are on the verge of star formation. In addition, the linewidth-size		
relation from the C18O (2–1) line is also examined after extracting the structures from the position-position-velocity		
(PPV) cube analysis. A relatively large number of structures have been obtained in the evolved protoclusters compared		
to the young and intermediate protoclusters. This suggests a complex dynamic inside the protoclusters, especially		
when H ii regions may have a significant impact on the surrounding environment. Moreover, the power-law index (p)		
obtained from the linewidth-size relation is around 0.50, which is steeper than the Kolmogorov law of turbulence and		
is expected for compre	ssible media.	

ASI2025_318	Shridharan Baskaran	Contributed Talk
	Stars Interstellar Medium and Astrochemistry in Milky Way	

A New Look at Protoplanetary Disk Accretion: Mid-Infrared HI Line Analysis from JWST-MIRI

The balance between accretion and ejection of material in protoplanetary disks regulates the mass reservoir available for planet formation. Traditionally, optical and near-infrared (NIR) HI lines, such as Hα, Paβ, and Bry, have been used to estimate accretion in young stellar objects (YSOs). However, these lines suffer from opacity effects to varying degrees and may originate from different regions, such as winds and jets, complicating their use as reliable accretion indicators. Higher-order HI lines with Nup > 6, originating from dense regions in magnetospheric accretion columns, offer a more reliable alternative. We undertake a large, homogeneous analysis of over 80 JWST/MIRI archival spectra of Class II disks, focusing on HI (Nup = 6–14) emission lines in the MIR range, taking advantage of MIRI's high sensitivity and broad wavelength coverage (5–28 µm). We present our detections of MIR HI lines and identify lines that can serve as accretion indicators. The MIR spectra of Class II disks are also known to be rich in molecular features. We discuss the molecular contamination affecting each HI line and remove their contributions by LTE modeling of the molecular features. We provide calibrated empirical relations to convert MIR HI line luminosities into mass accretion rates, improving upon available optical/NIR proxies. This enables the community to estimate accretion rates directly from JWST/MIRI spectra. Additionally, we compare observed HI line ratios with theoretical models by Kwan & Fischer (2011) to estimate accretion column densities more accurately, extending upon previous studies using Balmer and Paschen series lines. Finally, we explore the correlation between HI lines and fine-structure lines, such as [NeII], [FeII] and [ArII], which trace photoevaporation from the inner disk, allowing for simultaneous measurements of accretion and disk dispersal in Class II disks.

ASI2025_471	Gautam Das	Contributed Talk
	Stars, Interstellar Medium, and Astrochemistry in Milky Way	
Introducing Time Evolu	ution into a Parameterised YSO Accretion Disk Model and Predictin	g Changes in Observational
	Signatures	
During star formation,	young stars have been observed to be quite dynamic, often associa	ted with accretion disks and
termed Young Stellar (Dbjects (YSOs). FUOrs are a class of YSOs characterized by a rise	in lightcurve brightness by a
few orders of magnitu	de, followed by fading in decadal to century time scales. When v	ve look at the lightcurves of
FUOrs during their out	purst epoch, we find that lightcurve profiles are quite different for ea	ach star. Thus, modelling the
lightcurves of these objects is crucial to understanding how different components of these systems evolve during		
outbursts. We use a simple parameterized model called YSOpy which couples passively irradiated dust disk, viscously		
heated gas disk, stellar photosphere and magnetospheric accretion funnel emissions. We develop a pipeline that		
tracks how various parameters of these emission components couple and evolve to generate the observed lightcurves		
in optical and near-infrared bands. We use this pipeline for FUOrs like GAIA 17bpi, V960 Mon and HBC 722 to see how		
observational signatures change with time. This provides important insights into the disk-magnetospheric interactions		
throughout the cycle by enabling us to predict which parts of the model can be best observed at each point of the		
outburst cycle. We find that these stars can take very different evolutionary pathways during their transition from low		
to high state in an outbursting epoch.		

16th February 2025 Parallel Session - High Energy Phenomena, Fundamental Physics and Astronomy I [Chairperson: Shasvath Kapadia] [Time: 14:00 – 15:45]

ASI2025_57	Yogesh Maan	Invited Talk	
	High Energy Phenomena, Fundamental Physics and Astronomy		
	Origin and Environment of Fast Radio Bursts (I)		
Fast radio bursts (FRBs	s) are one of the most intriguing discoveries in the transient radio u	niverse happened in the last	
two decades. FRBs are	e observed as short, a few milliseconds wide, radio bursts with typ	ical fluences of the order of	
a few Jy ms. However,	a few Jy ms. However, their cosmological distances imply that these short-lived events radiate enormous amount of		
energy, and the exact r	nechanism and origin of such energy release is still an active topic	c of research. To date many	
hundreds of FRBs have been reported to be discovered (the actual number is potentially a few thousands but not			
published yet). A smal	published yet). A small fraction of these, called repeating FRBs, have been found to repeat. These repeating FRBs		
enable their precise localization using sensitive interferometeric telescopes, and hence, a multitude of probes,			
including multi-wavelength follow ups and deep searches for potential existence of their radiative environments. Such			
probes have resulted in to detection of persistent radio emission (PRS) associated with a few repeating FRBs so far.			
The observed PRSs have been found to be highly compact and provide a crucial clue to the central engine that is			
responsible for the FRB emission. I will provide a brief review of the worldwide efforts towards understanding the origin			
of FRBs, including our o	own recent results in this direction.		

ASI2025_633	Yash Bhusare	Contributed Talk	
	High Energy Phenomena, Fundamental Physics and Astronomy		
Expl	oring the Local Environments of Repeating FRBs with uGMRT Obs	ervations	
Fast Radio Bursts (FRB	s) are an enigmatic phenomenon. Since their discovery in 2007 m	any theoretical models have	
been proposed. With a	rise in the number of FRB detections, observations are helping to c	onstrain theoretical models.	
The discovery of Persis	The discovery of Persistent Radio Sources (PRSs) associated with three repeating FRBs has provided unique clues		
about their local enviro	about their local environments. We have utilized the upgraded Giant Metrewave Radio Telescope (uGMRT) to conduct		
deep radio observatio	ns of the regions surrounding three highly active repeating FF	RBs: FRB 20220912A, FRB	
20240114A, and FRB 2	20240114A, and FRB 20240619D. By imaging these fields at low frequencies using uGMRT Bands 3 (300-500 MHz)		
and 4 (550-850 MHz), v	and 4 (550-850 MHz), we have explored the local environments of these FRBs and gain insights into their surroundings.		
Our observations revea	Our observations reveal radio emission in the host galaxy of FRB 20220912A, likely linked to star formation. For FRB		
20240619D, no PRS was detected, and we placed upper limits on the local radio emission. In the case of FRB			
20240114A, we repor	20240114A, we report the discovery of a potential PRS, supporting the correlation between the FRBs' rotation		
measure (RM) and their emission. We also used SDSS and WISE public dataset for estimating properties of the host			
galaxy. Following the developments at higher radio frequencies, this candidate will join a limited group of FRBs which			
have associated PRSs. We will discuss our findings, their implications for theoretical models, and how they fit into the			
overall picture of FRB-PRS pairs.			

ASI2025_737	Ajay Kumar	Contributed Talk
High Energy Phenomena, Fundamental Physics and Astronomy		
	Prohing Fast Radio Bursts using Deen Learning and GMRT	

Fast Radio bursts are bright dispersed radio pulses of cosmological origin. Currently, several hundred of them are known and published. The population of FRBs are classified as one-off events and repeaters. A small fraction of FRBs are active repeaters which can be studied in great detail to gain insights into their origins and emission mechanism. The discovery rate of FRBs is already a few per day and is expected to increase rapidly with new surveys coming online. The growing number of events necessitates prioritized follow-up due to limited multi-wavelength resources. I will describe Frabjous, a deep learning framework for an automated morphology classifier with an aim towards enabling the rapid follow-up of anomalous and intriguing FRBs and a comprehensive statistical analysis of FRB morphologies. The results obtained from the application of Frabjous on simulated and first CHIME/FRB catalogue and the potential for more accurate and reliable classification will be discussed. I will also present the results from recent observational campaigns of several active repeaters, including FRB220912A and FRB240114A using uGMRT. I will describe their burst properties, energy distributions at lower radio frequencies, host environments, temporal evolution, and frequency-dependent activity. Finally, I will discuss the implications of our results in the context of proposed progenitors models and emission mechanisms for repeating FRBs.

ASI2025_499	Mukul Bhattacharya	Contributed Talk	
	High Energy Phenomena, Fundamental Physics and Astronomy		
Fast radi	o bursts: source properties, emission mechanism and cosmologic	al applications	
Fast radio bursts (FRBs	s) are energetic millisecond duration pulses, located at cosmologica	al distances, whose physical	
origin is still debated m	ore than a decade since their discovery. The detection of a Galactic	FRB in April 2020 suggested	
that at least some FRB	s can originate from magnetars. Characterizing FRB source popula	tion will help optimize future	
search strategies, and	provide valuable insights regarding their progenitor models as well	as the source environment.	
In this talk, I will first de	escribe a generalized framework that can be utilized to constrain p	roperties of the FRB source,	
host galaxy and intervening medium directly from their multi-band radio observations. Next, I will discuss the			
mechanism for the production of coherent radio bursts that are likely accompanied by persistent radio emission			
originating from the magnetized wind nebula surrounding the central neutron star (NS). These late-time radio emission			
have now been detecte	have now been detected for three localized repeating sources and they provide direct constraints on the age, magnetic		
field, spin period of the NS as well as the energy density of the environment. Lastly, I will discuss how a fluence-limited			
survey of cosmological FRBs can be used as a potential probe to investigate He reionization history using the			
dispersion measure distribution of these sources to help reveal energetic processes in the early Universe.			

ASI2025_167	Paras Koundal	Contributed Talk
	High Energy Phenomena, Fundamental Physics and Astronom	у
	Scientific Highlights from the IceCube Neutrino Observatory	
The IceCube Neutrino	Observatory is a cubic-kilometer observatory located at the South	Pole. It is designed to probe
the universe's most ex	treme environments, by detecting astrophysical messengers like	neutrinos and cosmic rays
from their sources. The	e talk will provide an overview of the IceCube Observatory, and k	ey scientific achievements.
Prominent scientific results like identifying astrophysical neutrino sources, mapping of the Galactic Plane in neutrinos,		
energy spectra of diffuse neutrino flux, and insights into cosmic-ray anisotropy and composition will be highlighted.		
IceCube's role as a leading multi-messenger observatory and its contribution to particle physics through research		
areas like neutrino oscillation will also be covered. The talk will also discuss ongoing and planned detector upgrades,		
such as the IceCube Upgrade and IceCube-Gen2, which will enhance the sensitivity, measurement accuracy, and		
increase the aperture a	t the highest energies.	

ASI2025_659	Debabrata Deb	Contributed Talk
	High Energy Phenomena, Fundamental Physics and Astronom	у
The Second Data R	elease of InPTA: Precise Timing of MSPs and Implications for Gravi	tational Wave Detection
We present the secor	nd data release (DR2) of the Indian Pulsar Timing Array (InPTA) e	experiment, which provides
precise times of arriva	l (ToAs) and dispersion measures (DMs) for around 27 millisecor	nd pulsars (MSPs) observed
using the uGMRT acros	ss Band 3 (300–500 MHz) and Band 5 (1260–1460 MHz). By optimi	zing sub-band selection and
using noise-free, frequency-resolved templates, we eliminate the need for frequency-dependent parameters,		
enhancing timing precision. The time baselines range from 1.2 to 7.3 years, and recent hybrid observations increased		
coverage for additional pulsars. Precise DMs, with uncertainties between \${10}^{-4}\$ and \${10}^{-6}\$ pc cm-3,		
reveal solar wind effects in certain pulsars and highlight potential DM jumps, e.g., in PSR J1125+7819. This dataset,		
integrated with other PTA datasets for IPTA DR3, will contribute to gravitational wave detection efforts. Ongoing work		
includes noise modeling, exploring gravitational wave backgrounds, and studying interstellar medium (ISM) effects.		
Future plans also include leveraging this data for auxiliary science projects on DM and scattering, as well as continued		
monitoring until the Square Kilometer Array (SKA) becomes operational.		

16th February 2025 Parallel Session - Galaxies and Cosmology I [Chairperson: Rajeshwari Dutta] [Time: 14:00 – 15:45]

ASI2025_603	Ashish Kumar Meena	Invited Talk	
	Galaxies and Cosmology		
	Extremely magnified stars in galaxy cluster lenses		
The first serendipitous	detection of a highly magnified star in a spiral galaxy (z=1.49) le	nsed by a foreground galaxy	
cluster, MACS1149 (z	=0.54), has opened a new window to observe stars at cosmolo	gical distances. Since then,	
several other lensed st	ars have been detected in HST imaging of various galaxy clusters, a	and nearly all galaxy clusters	
observed by JWST reve	observed by JWST revealed lensed star candidates. Observing highly magnified stars at cosmological distances is a		
combined result of st	combined result of strong- and micro-lensing effects. The presence of point-like masses (such as stellar-mass		
objects) in the lens lea	objects) in the lens leads to the formation of micro-critical curves and micro-caustics in the lens and source planes,		
respectively. Wheneve	respectively. Whenever a star in a strongly lensed galaxy crosses a micro-caustic, it gets highly magnified, which might		
make it observable br	make it observable briefly as a transient source. In my talk, I will discuss the basic idea behind detecting highly		
magnified stars in cluster lenses. I will also discuss our recent detection of lensed star candidates at z=4.8 in the			
MACS0647 galaxy cluster. The number of such lensed stars is expected to increase continuously, assisting us in			
probing the first stars a	nd understanding the compact dark matter fraction in the intraclus	ster medium.	

ASI2025_331	Ankur Barsode	Contributed Talk	
	Galaxies and Cosmology		
	Detecting a population of strongly lensed gravitational waves		
A small fraction (~0.1 – 1%) of gravitational-wave (GW) signals detectable by ground-based detectors will be strongly			
lensed by intervening galaxies and clusters, producing multiple detectable copies of the same signal. These signals			
arrive at the detectors at different times due to characteristic time delays induced by lensing. These time delays differ			
from those between independent, unlensed GW signals, which might hint at a population of lensed signals in the data.			
We develop a Bayesian method to constrain the fraction of lensed signals in a population of GW events, based on the			
time delay between them. We discuss the prospects of detecting strong gravitational lensing through such a			
measurement by considering various observation scenarios, with potential applications to cosmography.			

ASI2025_385	Aniruddha Chakraborty	Contributed Talk
Galaxies and Cosmology		

GLANCE: Gravitational Lensing Authenticator using Non-modelled Cross-correlation Exploration in Search for Lensed GW Signals

Gravitational lensing occurs when massive astrophysical objects distort spacetime, causing electromagnetic (EM) waves or gravitational waves (GWs) to deflect from their paths. Depending on the wavelength of the GW in relation to the size of the lensing object, two regimes arise: microlensing and strong lensing. When the GW wavelength is comparable to or larger than the lens, microlensing occurs, leading to frequency-dependent modulations. Conversely, strong lensing arises when the wavelength is much smaller than the lens, yielding frequency-independent effects. By the third observation run, the LIGO-Virgo-KAGRA detector network had detected over 90 GW events, yet no confident lensing events. To address this, we developed GLANCE (Gravitational Lensing Authenticator using Non-modelled Cross-correlation Exploration) to search for lensed GW signals. This is a first-in-class approach to detect lensed GWs through finding the similarities of lensed GW signals at the strain level overlap. GLANCE utilizes distinct crosscorrelation methods tailored to each lensing regime. For strong lensing, GLANCE cross-correlates between noisy reconstructions of lensed signals, enhancing the similarity between signals while suppressing noise. A significant deviation from noise cross-correlation indicates a potential lensing candidate. The technique is able to pick up lensed GW signals with a false alarms close to ~0.8/yr, which is very low compared to the pre-existing techniques. For microlensing, GLANCE focuses on residuals obtained by subtracting the best-fit GW from the data. Through testing on simulated data, GLANCE demonstrates a robust false alarm rate at network SNRs around 30. The presence of lensing can bias the inference of the GW source properties. Thus a joint source and lens characterisation was incorporated in GLANCE for their correct inference. Currently, we are applying GLANCE to open GW data, anticipating that with nearly 1000 detections expected from advanced GW detectors and next-generation facilities, at least one lensed GW pair will be identified.

ASI2025_596	Shreya Mukherjee	Contributed Talk
	Galaxies and Cosmology	
Study of Baryonic Eff	ects on Matter Power Spectrum, and Dark Energy Equation of Stat	e Parameter using Cosmic
	Shear	
We present cosmologi	cal constraints on dark energy equation of state parameter 'w' from	the cosmic shear two-point
correlation function measured by a the weak lensing analysis of the Subaru HSC survey. When combined with		
likelihood from Supernovae of type Ia and Baryon Acoustic Oscillation data, our analysis constrains w = -1.144+0.102-		
0.096 with 68% confidence, which is consistent with the cosmological constant. We also infer the value of the		
parameter S8, which characterizes the amplitude of clustering or matter density fluctuations, to be 0.751±0.027 with		
68% confidence. We also utilize model agnostic prescription of the baryonic feedback processes such as star		
formation, AGN feedback and their effects on the matter-power spectrum and infer the power spectrum suppression		
required to explain the cosmic shear data on small scales. This suppression can be tested using the galaxy-galaxy		
lensing signal from data, to address the degeneracy between cosmological parameters and baryonic feedback effects.		

ASI2025_163	Ayan Nanda	Contributed Talk
Galaxies and Cosmology		

Self-Similarity of Halo Shapes in Cosmological Simulations

We investigate the shapes of dark matter halos in cosmological \$N\$-body simulations in scale free Einstein-De Sitter (EdS) and \$\Lambda\$CDM cosmologies. We use two halo finders, SUBFIND (SF) and ROCKSTAR (RS), to identify bound structures. We compute the shape tensor of well-resolved central halos and obtain their principle axes (\$a \geq b \geq c)\$. We find that at fixed mass, halos become more spherical with decreasing redshift. The distribution of axis ratios (\$q=b/a,s=c/a\$) show self-similar behaviour when the mass \$M\$ is scaled by the non-linear mass \$M_{\mathrm{nl}}\$, \$\left(\frac{M}{M_{\mathrm{nl}}}\right)\$, across power-law spectral indices. This leads to the average value of the axis ratios(\$\bar{q},\bar{s}\$) also showing self-similar behaviour as a function of \$\frac{M}{M_{\mathrm{n}}}\$ across spectral indices, within uncertainties. However \$\bar{q},\bar{s}\$ show a tighter self-similar behaviour as a function of peak height $\left(\sum_{x,y} \right)$. We find that $(\log_{10}(\nu), \log_s)$ are consistent with a universal function, $y=a-b \\ 10(\nu)$ d\right]\right]\$ across the spectral indices ranging from \$n=-1.0\$ to \$n=-2.2\$. When comparing halo finders we see that the the results with RS show a tighter self-similar behaviour compared to those with SF. We extend our analysis of halo shapes for the standard \$\Lambda\$CDM cosmology. However we find a different universal function describing \$(\bar{q}(\nu),\bar{s}(\nu)\$). The width of the distributions of \$(q,s)\$ in both, scale-free and \$\Lambda\$CDM, classes of simulations can be reduced further by classifying halos as oblate, triaxial or prolate, each of which are described by self-similarity.

ASI2025_188	Trupti Patil	Contributed Talk
	Galaxies and Cosmology	
	Dynamic Dark Energy and the Curvature: A Journey through Data	sets
This paper investigates	s the effects of spatial curvature in a model where dark matter a	nd dark energy interact. The
analysis employs a range of datasets, including CMB, BAO, Type Ia Supernova, \$H (z) \$ from cosmic chronometers,		
\$H_0\$ measurements from Megamasers and SH0ES, growth rate data and strong lensing time delay measurements,		
to assess the model's fit and explore the late-time dynamics of the interacting dark sector in a non-flat cosmological		
framework. The study indicates that introducing curvature does affect the Hubble constant (\$H_0\$) and the structure		
growth parameter (\$S_8\$), and also helps in alleviating the tensions between early and late universe observations to		
some extent. The observational data shows an indication for an open universe. This implies that the presence of		
curvature and its influence cannot be neglected entirely.		

16th February 2025 Parallel Session - Facilities, Technologies and Data science I [Chairperson: P. K. Mohanty] [Time: 14:00 – 15:45]

ASI2025_605	Sanmoy Bandyopadhyay	Contributed Talk	
Facilities, Technologies and Data science			
	Integral Adaptive Thresholding Inspired Solar Filament Detection	n	
Filaments are key featu	ires on the solar surface. When the magnetic field destabilizes, the	ese filaments erupt as flares	
and coronal mass eject	tions (CMEs), releasing stored plasma into space. These eruptions	contribute to space weather	
activities, emphasizing	the importance of filament detection for studying the solar magnet	ic field and predicting space	
weather events. Solar	filaments appear as dark, thin, rope-like structures with low terr	peratures and high plasma	
density. They are visibl	e in H $lpha$ full-disk solar images at the 656.3 nm spectral line and in	ultraviolet at the 393.3 nm	
Calcium K line. This in t	turn converts the overall task of solar filament detection into a tas	k of identifying thin and long	
dark features in solar in	mages. Over time, various supervised and unsupervised compute	r vision methods have been	
applied to detect solar	filaments, such as global thresholding, local thresholding, artificia	l neural networks, and deep	
learning techniques. Ho	owever, these methods are not universally effective specially for the	e case of solar images having	
non-homogeneous dis	tribution of intensity level, on the other hand deep learning appro	aches, in particular, require	
extensive labeled datas	sets. Alongside, the rise in both ground and space-based solar obs	ervatories has increased the	
volume of solar image	s, necessitating efficient, real-time, and automated filament dete	ection methods. To address	
this, an integral adaptiv	e thresholding-based unsupervised approach has been developed.	. This method first segments	
solar images and extra	solar images and extracts dark features using adaptive thresholding, followed by a disconnected component analysis		
to isolate filament regions from these extracted dark features. Tests on full-disk H $lpha$ images from the Big Bear Solar			
Observatory (BBSO) in 2013 show that this approach achieves an accuracy rate above 99% for most solar images,			
outperforming tradition	al object detection algorithms. This adaptive method offers a relia	able solution for automated	
filament detection acro	oss a range of solar images.		

ASI2025_222	Anuraag Arya	Contributed Talk
	Facilities, Technologies and Data science	
	Deep space navigation with X-ray pulsars	

Deep space navigation is essential for coordinating space satellites and future missions, including sending probes beyond the solar system. Methods like radar ranging can give accurate measurements of the radial coordinate of a spacecraft, but are uncertain on other axes. This method also becomes problematic for spacecraft that are far from Earth. One solution to this limitation which has often been discussed in literature is to use pulsars as reference clocks to calculate the inertial position of the satellite on-board, removing any dependence on an Earth-origin signal. X-ray pulsars are ideal for this as high energy detectors can be more compact than radio antennas. To test and demonstrate the principle, we propose a small payload utilizing X-ray detectors to observe millisecond pulsars for faster and more accurate navigation in deep space. The payload will have a small form factor (1.5U) and will be equipped with two Cadmium Zinc Telluride (CZT) detectors, covering an energy range of 20 – 250 keV. Data will be procured using an Artix Cmod-7 FPGA, which will also undertake basic processing. In addition, we will also incorporate a Coded Aperture Mask (CAM) to measure the attitude of the payload. By tracking pulse time delays relative to the Solar System Barycentre (SSB) by analyzing phase shifts, we can estimate the position of CubeSat with respect to SSB. I will describe the payload in detail and show laboratory results of test and calibration. In the future, we will seek launch opportunities to integrate this payload into a larger satellite, or configure it as a stand-alone CubeSat mission.

	_
1	C
	n
_	-

ASI2025_473	Prajwel Joseph	Contributed Talk
	Facilities, Technologies and Data science	
	Arivu: Regenerated High-Level UVIT Data Products	
The Ultra-Violet Imagir	ng Telescope (UVIT) on board AstroSat is unique in its capability fo	or high-resolution ultraviolet
imaging (<1.5") and lov	w-resolution ($\lambda/\delta\lambda \approx 100$) slitless spectroscopy, offering a wide field	eld of view of \sim 0.5 degrees.
Now nearly a decade i	n operation, UVIT remains a key resource, producing data of imm	ense value to the scientific
community. We will pre	esent an overview of the latest version (7.0.1) of the UVIT pipeline ar	nd introduce "Arivu", a newly
defined high-level versi	on of UVIT data products. All high-level products generated using p	ipeline versions with a major
version number of seve	en are now collectively termed "Arivu." This updated pipeline vers	ion includes two significant
improvements over the	e previous version (6.3): (a) a higher level of success in combining e	pisode-wise images, and b)
a higher level of succes	ss and smaller residual errors in the astrometric fit. We will discus	s the specific solutions that
made these advances	possible. The Arivu version of the science-ready UVIT data has ${\ensuremath{I}}$	peen available at the Indian
Space Science Data Co	enter of the Indian Space Research Organisation since 01 June 202	4.

ASI2025_328	Aparna Sekhar E R	Contributed Talk
	Facilities, Technologies and Data science	
Model	ing Optical Performance in Integrated Model of Segmented Mirror	Telescopes
This project presents ad	dvanced modeling and simulation studies of the Large Segmented I	Mirror Telescope utilizing the
SMT Integrated Modeli	ng Tool (codeSMT), currently being developed at the Indian Insti	tute of Astrophysics (IIA). A
crucial focus of this st	udy is the optical performance modeling of the segmented mirro	or telescope under dynamic
conditions of Atmosphe	eric Seeing. This study will aid in the optimal design and performan	ce prediction of the National
Large Optical Telescop	e (NLOT). In the first phase, we generated atmospheric turbulend	e phase screen to simulate
the impact of atmosphere	eric conditions on the phase of light wavefront as they propagate t	hrough Earth's atmosphere.
Our analysis reveals the	e effects of turbulence on point spread functions (PSFs), providing i	nsight into how atmospheric
distortions can degrade	image quality. In the second phase, we modeled the adaptive optic	cs (AO) system for the NLOT,
specifically addressing	g lower-order aberrations such as tip and tilt. By correcting	for tip-tilt aberrations, we
demonstrate an impro-	vement in the image quality. This correction is vital, as it effecti	vely mitigates a substantial
portion of the atmosph	eric aberrations that distort incoming wavefront. To implement this	s correction, we employed a
zonal sensing method,	which divides the wavefront into multiple zones. The deviations	from a plane wavefront are
measured using quad-	cell photodetectors, whose dimensions are carefully selected to	align with the expected PSF
size. Our findings unde	erscore the importance of optical performance modeling in optim	nal design and performance
prediction of the large S	Segmented Mirror Telescopes.	

ASI2025_174	Nagendra Neerudu	Contributed Talk
	Facilities, Technologies and Data science	

Scientific Ballooning in India: Recent Activities and Developments at TIFR Balloon Facility

Scientific ballooning provides numerous opportunities in many science disciplines, particularly in Astronomy, Atmospheric Sciences, and Space Science research at a very low cost. The Balloon Facility of Tata Institute of Fundamental Research (TIFR-BF) is unique in the country and it can provide complete solutions for balloon-borne experiments by custom-designing various types of balloons with volumes ranging from 300 cu.m to 740000 cu.m for carrying 20 - 1000 kg payloads to an altitude of 18 - 42 km. Balloon-borne experiments are more focused and allow researchers/scientists to quickly change over to new technology developments and their tests in a shorter duration. These large-volume plastic/scientific balloons are floated at their intended altitudes with heavy scientific instruments for a few hours, depending on the prevailing wind conditions. The TIFR-BF has developed small polyethylene specially shaped balloons such as spheres and oblate spheroids for supporting the U R Rao Satellite Centre (URSC)-ISRO for testing the satellite communication payloads in a controllable environment as well as other deployable modules of Chandrayaan missions. Recently, TIFR-BF provided launch and payload recovery support to various balloon campaigns in collaboration with national and international research institutes. The TIFR-BF also conducted a balloonborne Far-Infrared astronomy experiment with a payload weight of 850 kg, which floated at 32 km altitude for approximately 6 hours. In this talk, various kinds of balloons available at the TIFR-BF for user scientists, recent balloon experiments conducted for astronomy, and atmospheric sciences, and support provided to satellite payload testing, etc., will be discussed.

ASI2025_330	Sakram Korra	Contributed Talk
	Facilities, Technologies and Data science	
Recent Developments	in Scientific Ballooning and Utilization of Hydrogen as a Lifting gas	s for Stratospheric Balloons
Abstract: The Balloon F	Facility of Tata Institute of Fundamental Research (TIFR-BF), an int	egral part of the Department
of Atomic Energy (DAI	E), plays a pivotal role in advancing balloon-borne scientific res	earch by providing a robust
platform for experime	nts in astronomy, atmospheric sciences, and other disciplines	. Over the years, scientific
ballooning has evolved	I significantly, with advancements in materials, payload design, fl	ight control, and propulsion
systems, enabling more	e complex and high-precision missions. These developments have	expanded the scope of high-
altitude research and c	pened new possibilities for stratospheric exploration. One of the r	nost notable shifts in recent
years has been the ren	ewed interest in using hydrogen as a lifting gas for stratospheric b	alloons. Historically, helium
was the preferred cho	ice due to its inert nature and safety profile. However, the rising	global demand and limited
availability of helium ha	ave led to sharp price increases, making it increasingly impractical	for large-scale or long-term
stratospheric mission	s. This has sparked global efforts to explore hydrogen as a $ imes$	viable alternative, given its
abundance, low cost,	and environmental sustainability. TIFR-BF has substantial exper	ience in using hydrogen for
balloon operations, ha	wing developed effective protocols for its safe storage, handling	, and flight operations over
several decades. The	facility's expertise ensures reliable and secure operations, mitig	gating the risks traditionally
associated with hydro	gen. This long-standing capability positions TIFR-BF to make mea	aningful contributions to the
evolving global convers	sation about the feasibility of hydrogen-based ballooning. As the sc	ientific community explores
sustainable technologi	es for high-altitude missions, TIFR-BF's leadership will be instrume	ntal in addressing key safety
concerns and operation	nal challenges. Leveraging its extensive experience, the facility	is well-prepared to support
future stratospheric b	alloon missions, paving the way for environmentally sustainab	le, cost-effective scientific
research at the edge of	space.	

ASI2025_396	Phanindra DVS	Contributed Talk
	Facilities, Technologies and Data science	
	Fabrication and Characterization of Liquid Crystal Retarders	
Liquid Crystal (LC) mo	lecules can alter the polarization state of incoming radiation by va	arying the voltage applied to
the device. The special	lty of these liquid crystal retarders can help replace conventional o	crystal retarders, enhancing
the performance of	polarimeters constructed with these devices. However, man	ufacturing LC retarders is
complicated, and the c	commercially available ones are expensive. Here, we introduce a s	imple procedure to develop
a prototype LC retarde	er. Commercially available E7 Nematic Liquid Crystal (NLC) is us	ed here to demonstrate the
prototype. Nylon suspe	ension, which has good thermal stability with a melting point of 15	50°C, is used as the aligning
layer, a cheaper alterna	ative to the conventionally used polyimide layer. The size of the fab	ricated LC retarder is 1-inch
square with an operat	ional voltage range of 20V. In this presentation, we outline the f	abrication procedure of the
prototype LC Retarders	s and their characterization. The uniformity of the fabricated LC re	tarder is tested using an in-
house developed Full-	Stokes polarimeter, and these results will also be presented.	

16th February 2025 Talk by Awardees Session [Chairperson: Sarita Vig] [Time: 16:20 - 18:15]

ASI2025_335	Shylaja B. S.	Award Talk	
	Plenary - ASI Zubin Kembhavi Award lecture		
	Outreach - after in-reach		
It is generally considered that life in a planetarium is smooth sailing and light. Here I describe the efforts to raise the			
'in-reach'; in other words, to create awareness and the utilisation of the planetarium. The story of the raise the footfall			
from couple of thousands to lakhs. Since literally 'outreach' is not literally possible, the 'in-reach' had to be modified			
into outreach.			

ASI2025_766	Anupam Bhardwaj	Award Talk	
ł	Plenary - Professor M. K. Vainu Bappu Gold Medal lecture		
	Stellar route to the Hubble Constant		
The present expansion rate of	the Universe, the Hubble constant, is a key cosmological p	parameter which can provide	
stringent constraints for the r	nature of the dark energy that is known to be accelerating	the cosmos. Currently, the	
Hubble constant values base	d on a variety of standard candles observed with the Gaia/	'Hubble/James Webb space	
telescopes and ground-based	d telescopes, are in an intriguing discord with the measure	ment from the Planck space	
mission. This so-called Hubb	le tension is most dominant at the ~5 sigma level between	the Hubble constant values	
obtained using Cepheid-Su	pernovae distance ladder and the values inferred wit	th the Cosmic Microwave	
Background observations from	m the Planck satellite pointing towards new physics in the	e cosmological model. I will	
review the latest local determ	inations of the Hubble constant based on stellar standard o	candles and discuss ongoing	
efforts to provide independe	ent calibrations of the first-step of the distance ladder u	using stellar populations of	
different ages and metallicitie	es, and their importance in evaluating the Hubble tension.		

ASI2025_815	Joe Ninan	Award Talk
F	Plenary - Professor M. K. Vainu Bappu Gold Medal lecture	
Dev	veloping new instruments for expanding the discovery spa	се
Astronomers have a rich tradi	tion of building new instruments to push the discovery spa	ice. In this Prof. Vainu Bappu
Award talk, I shall highlight so	me of the key science results from two extreme precision r	adial velocity spectrographs
we built for exoplanet science, and particularly how they helped us in discovering new planets that push the		
understanding of planet and s	star formation.	
I shall also talk about our new	v ongoing project to build a novel spectrograph, which will	be the fastest spectrograph
for ultra broad band spectrose	copy survey in the world. This instrument, dubbed TA-MOC	ONS will be a next generation
instrument on DOT, that will	have the unique capability to observe up to 8 targets a	anywhere in the 12 arc min

diameter field of view in the ultra broad band wavelength range of 360 nm to 2.5 micron simultaneously.

ASI2025_517	Nirupam Roy	Award Talk
PI	enary - Laxminarayana & Nagalaxmi Modali Award lecture)
	Atomic ISM in galaxies, near and far: Results & Surprises	
The interstellar medium (ISM)	, from which the new stars are born and to which the old st	ars inject matter and energy,
thereby enriching it, is an in	tegral and important component of the galaxies. Under	standing the structure and
evolution of the interstellar m	edium, that involves a diverse range of phenomena and a	a wide range of scales, is an
interesting exercise. I will brid	efly present how low radio frequency observations and nu	imerical simulations can be
utilized to explore a plethora	of science cases like the local ISM conditions and the dy	namics of nearby galaxies. I
will particularly focus on thr	ee closely related aspects - the multiphase nature of t	he atomic ISM, interstellar
turbulence and magnetic field	d - that play crucial roles in shaping the properties of the	ISM, and highlight the latest
insights and challenges in our	understanding of the atomic interstellar medium.	

ASI2025_684	Devojyoti Kansabanik	Award Talk
Plenary	- Justice Oak Award for Outstanding Thesis in Astronomy	lecture
Remote sensing the mag	gnetic field of coronal mass ejections in the heliosphere us	sing radio observations
Space weather (SpWx) refers	to the plasma environment in near-Earth space and the h	eliosphere, primarily shaped
by coronal mass ejections (CMEs)—massive plasma ejections from the Sun. The	geo-effectiveness of CMEs
depends largely on their mag	netic field strength and structure, which evolve as they in	teract with solar structures,
other CMEs, and the solar wir	nd. Predicting CME arrival times and the critical southwar	d (BZ) magnetic component
at 1 AU remains challenging d	ue to these changes. Accurate measurements of CME mag	gnetic fields are essential for
improving SpWx forecasting.	Radio observations across MHz to GHz frequencies provi	de a promising approach for
remotely sensing these fields	s. Gyrosynchrotron (GS) emission imaging can trace mag	gnetic fields from the lower
corona to ~10 solar radii, wh	ile Faraday rotation (FR) complements this by probing fie	elds in the outer corona and
heliosphere. Together, these	techniques enable a comprehensive understanding of CI	ME magnetic field evolution.
This talk will discuss recent	advances in developing optimal observing strategies	using next-generation radio
telescopes like the MWA, AS	SKAP, MeerKAT, NenuFAR, etc., and the challenges of	calibrating diverse datasets
across wide spectral ranges. 1	These efforts aim to provide homogeneous observables for	r constraining CME magnetic
field models from the corona	throughout the inner heliosphere and enhancing SpWx for	ecasting capabilities.

17th February 2025	
Plenary Session II	
[Chairperson: Liton Majumdar]	
[Time: 09:15 - 11:15]	
	-

ASI2025_786	Umesh Kadhane	Invited	
Plenary			
Laboratory investigation of nitrogen	nated aromatics and their role in understating a	astrochemical evolution of organics	
Occurrence of complex organics	in our solar system is challenging the human	understanding of the origin of life.	
Startling results by several space	missions are complementing the astronomica	al observations while improving our	
knowledge. While the Indian space	e agency takes on increasingly complex missi	ions, it becomes important that the	
Indian molecular physics commun	ity starts more interest in molecular astrophys	sics. At the AMP lab in IIST, we have	
conducted a series of investigation	s on energetic radiation processing of nitrogena	ated aromatics. These investigations	
are aimed at understanding the isomerisation and dissociation processes in these aromatics while trying to connect			
to their astrochemical relevance. Two main topics of interest are: first, to evaluate a possibility of nitrogenated			
aromatics as a source of anomalous HNC/HCN ratio in cometary surroundings as well as a source of cyanopolyynes			
which are common in comets and the upper atmosphere of Titan. And second, a more recent discovery of a strong			
tendency amongst this class of aromatics to undergo intracluster ion-molecule reactions. While the former topic			
strongly connects with photodisso	ciation processes under Extreme UV radiation	and high energy proton irradiation in	
planetary ionospheres and cometa	s, the latter is proposed to be a path way of	significance in the context of post-	
sublimation radiation interaction a	t the boundaries of protoplanetary disks. A bri	ef report will be presented on these	
investigations at IIST. The last few	minutes will be devoted to introduce a pan-I	ndia initiative on Organics in Space	
which was launched in the year	2023. The main goal of this initiative is to c	create national laboratory network,	
international collaborative network and direct engagement with the national space agency in collectively trying to			
understand the molecular origin or	understand the molecular origin of life. This will lead to a strong workforce, ground infrastructure and future space		
missions to address one of the most fundamental questions of humankind.			

ASI2025_783	Sudha Rajamani	Invited	
	Plenary		
The Astrobiological narrative of life's origin on the 'Pale Blue Dot'			
A central aspect of Astrobiology research pertains to delineating how life came about on our planet. The story is very			
ancient, intriguing, complex and continues to be one of the most fascinating scientific mysteries. It involves			
understanding how the transition from chemistry to biology would have occurred on Earth several billion years ago,			
much before any life as we now know even came about. Though this non-trivial puzzle is still missing many pieces, I			
will outline the current understanding prevalent in the field. In addition to having important implications for			
understanding whether there is life elsewhere in the Universe, I hope that this talk will get us thinking even more deeply			
about the only home we might ever know!			

ASI2025_829 Priyanka Chaturvedi Invited		Invited
Plenary		
Exoplanet Characterization: From Jupiters to Earths - The Way Forward		
The field of exoplanet research has flourished since the first detection nearly three decades ago, revealing a vast		
diversity of planets across a wide range of stellar types. In this talk, I will highlight some of the most intriguing		
discoveries and discuss the challenges involved in detecting these planetary systems. Additionally, I will explore key		
unanswered questions in the field and outline the exciting avenues of research that lie ahead.		

17th February 2025 Parallel Session – Sun, Solar System, Exoplanets and Astrobiology II + Thesis [Chairperson: Dipankar Banerjee] [Time: 11:45 - 13:00]

ASI2025_378	Komal Choraghe	Contributed Talk
	Thesis	

THE MAGNETOSPHERIC RESPONSE TO DIFFERENT NEAR-EARTH SPACE WEATHER CONDITIONS

Space weather, originating from the Sun, encompasses a range of disturbances that profoundly impact Earth's surrounding space environment. Solar flares, coronal mass ejections (CMEs), corotating interaction regions (CIRs), and solar energetic particle events are the major drivers of space weather and can disrupt Earth's communication networks, navigation systems, power grids, and satellite electronics. Severe space weather conditions reveal various phenomena, one being geomagnetic storms, primarily driven by interactions between the Sun's and Earth's magnetic fields. Investigating the recovery phase of geomagnetic storms is essential for understanding and predicting these phenomena. Our statistical analysis of 31 extreme geomagnetic storms over the past 30 years reveals a consistent dual-phase recovery pattern: an initial rapid phase followed by a slower phase. This initial recovery is well-modeled by exponential and hyperbolic decay functions, while the slower phase predominantly follows a constant decay function, suggesting a unified process underlying this gradual recovery. Our detailed analysis of ICME-induced extreme storms highlights a unique case where Alfvén waves present during the slow recovery phase contribute to a prolonged storm recovery period. For CIR-driven storms, typically weak to moderate, our study spanning 1996 to 2016 identifies twelve cases of intense storms induced solely by CIRs, with no ICME influence. Notably, in 83% of these events, a planar magnetic structure (PMS) emerged during the main phase, implying that nearly 2D PMS-like structures may strengthen the southward component (Bz) and enhance storm intensity during CIR-driven events. These findings provide crucial insights into the dynamics of extreme and intense storms and highlight specific mechanisms contributing to prolonged recovery and storm intensification.

ASI2025_175	Manoj Varma Sri Vatchavai	Contributed Talk
	Thesis	
The Solar Ultra-Vio	let Imaging Telescope: Detector characterization and on-board pro	ocessing for flare studies
The Solar Ultraviolet In	maging Telescope (SUIT) is one of the payloads onboard the Adit	ya-L1 mission. SUIT will be
imaging the Sun in the r	near Ultraviolet wavelength range (200 -400 nm) in 11 spectral band	ds using narrow and medium
band-pass spectral filt	ers covering a Field of View (FOV) of 1.5 solar radii. SUIT uses a 4k	x 4k CCD sensor for photon
detection. One of the ir	nportant observational goals of SUIT is to obtain high-cadence flar	e data from the initial stages
of the flare evolution.	This thesis includes studying, developing, characterizing, and test	ting different subsystems of
SUIT concerning this ol	oservational goal. One of the most important subsystems of SUIT is	s the CCD which is placed at
its focal plane. The CC	D characterization test setup and procedures are explained and the	e measured values of various
parameters including r	oise, dark current, gain, linearity, and cross-talk are presented in t	his thesis. The results show
a satisfactory performa	ance from the CCD as well as the readout electronics to meet the s	pecifications required by the
SUIT payload. The SUIT	Γ onboard intelligence algorithm is the next important step to obtain	ning high-cadence flare data.
The complete intellige	nce algorithm consists of the HEL1OS flare-trigger module, the fla	are-localization module, the
Region of Interest (Rol) tracking module, and the auto-exposure control module. This th	esis explains the working of
these modules, their	development, and testing. SUIT operation will be carried out by	using a set of observation
sequences. The testing	g of these sequences and verifying the output image data is prese	ented in the final part of this
thesis.		

ASI2025_241	Vikas Soni	Contributed Talk
	Thesis	

The Effect of Metallicity and Vertical Mixing on the Abundance of Major H-C-N-O-bearing Species in the Atmosphere of Exoplanets

The atmospheric characterization of exoplanets is a central objective in present-day astronomy, especially with the capabilities of JWST and other upcoming observatories. The spectra of exoplanet atmospheres offer insights into their atmospheric composition and thermal structure. Molecules like CO, CO2, CH4, H2O, NH3, and HCN, which are the building blocks for more complex organic molecules and significant reservoirs of elemental C-N-O, have been detected in exoplanet atmospheres. Among various parameters influencing atmospheric composition, metallicity plays a significant role. The effect of atmospheric metallicity on thermochemical equilibrium abundances is reasonably well-constrained, though its effect on the disequilibrium composition needs to be better constrained. This thesis provides a comprehensive study of the effect of atmospheric metallicity on the composition of H2O, CO2, CO, CH4, NH3, N2, and HCN over a large parameter space (temperature: 500-2500 K, pressure: 0.1 mbar - 1 kbar, metallicity: 0.1-1000×solar metallicity) in the presence of disequilibrium processes. We built a 1-D photochemistrytransport model to solve the mass continuity equation for each species at every atmospheric layer. The model includes eddy diffusion and molecular diffusion as transport processes and uses the two-stream approximation of radiative transfer to estimate the photon flux for calculating the photochemical rates. As a more flexible approach for a general study, the quenching approximation method is used to calculate the atmospheric abundance in the presence of vertical mixing. To apply the quenching approximation, we calculated chemical timescales for major HCNO-bearing molecules using a reduced chemical network, with vertical mixing derived via the methodology given by Smith (1998). I will present our findings on how molecular abundances shift with metallicity under thermochemical equilibrium and in the presence of vertical mixing. I will also discuss the implications of the quenching approximation for atmospheric retrieval, focusing on constraining vertical mixing strength and atmospheric metallicity.

ASI2025_200	Sindhuja Gunaseelan	Contributed Talk	
Sun, Solar System, Exoplanets, and Astrobiology			
Comparative Study of	Comparative Study of Helium-Rich and Helium-poor Events Observed by the High-Energy Telescope (HET) Onboard		
	Solar Orbiter		
The High-Energy Teles	scope (HET) onboard the Solar Orbiter mission measures the e	energy spectra of energetic	
particles, including hel	ium and protons, in the inner heliosphere. We present a comparat	ive analysis of 7 helium-rich	
events and 5 helium-pe	oor events observed by HET from July 2020 to October 2024, span	ning multiple solar rotations	
and a variety of solar wind conditions. Helium-rich events are particularly significant as they provide insights into the			
mechanisms of particle acceleration and transport associated with solar flares and coronal mass ejections (CMEs).			
The HET instrument, designed to analyze energetic particles in the solar wind, operates in an energy range of ~7 - 500			
MeV/nucleon (species	s dependent). Our analysis aims to elucidate differences in e	nergy spectra and particle	
composition between	helium-rich and non-helium-rich events, thus shedding light	on the underlying physical	
processes governing th	nese phenomena. The Solar Orbiter's unique orbit, with a perihelio	on of approximately 0.28 AU	
(42 million kilometers	s) from the Sun, allows for unprecedented examination of part	ticles accelerated by solar	
eruptions. Additionally	, we present the kinematics of the associated CMEs and flare prope	erties. Our study is expected	
to enhance understand	ding of the role of helium-rich events in the solar wind and their p	ootential impacts on Earth's	
magnetosphere, contri	buting significantly to the broader comprehension of heliospheric o	dynamics.	

2	^
2	4

	ASI2025_622	2025_622 Upasna Baweja	Contributed Talk
Sun, Solar System, Exoplanets, and Astrobiology		Sun, Solar System, Exoplanets, and Astrobiology	

Investigation of Co-existence of longitudinal and transverse waves in polar plumes Magnetohydrodynamic waves play a crucial role in heating the solar corona and generating the solar wind. Recent observations have demonstrated evidence of longitudinal intensity perturbations (using Atmospheric Imaging Assembly (AIA) onboard Solar Dynamic Observatory (SDO)) and transverse wave propagation (using Coronal Multichannel Polarimeter (CoMP)) in polar plumes. Despite these findings, there exists a gap in our understanding due to the lack of simultaneous detection of both wave types within the polar regions using high-resolution imaging techniques. In this study, we aim to investigate the co-existence and excitation mechanisms of the longitudinal and transverse oscillations in the polar regions. We utilise the high spatial and temporal resolution images of Extreme Ultraviolet Imager (EUI) aboard Solar Orbiter. We analysed the north polar data corresponding to Sep 14, 2021, obtained using EUI (17.4 nm) when the spacecraft was at 0.59 astronomical units (AU) from the Sun. Our preliminary results have revealed the signatures of longitudinal oscillations in the polar regions, and we are exploring the transverse oscillation signatures. We are also investigating the consequences of their simultaneous existence in the polar plumes. In this presentation, we will share our initial findings.

17th February 2025 Parallel Session – Stars, Interstellar Medium, and Astrochemistry in Milky Way II + Thesis [Chairperson: Manoj Purvankara] [Time: 11:45 - 13:00]

ASI2025_460	Saumya Gupta	Contributed Talk
	Thesis	
	Decoding Low Mass Star Formation: The Role of Cluster Environm	nent
Stars are building block	ks of the Universe. However, our understanding about star and pla	net formation process is yet
insufficient to compreh	end the role of star-forming environment on stellar evolution and re	elated processes. This thesis
is an important step to	answer the long-standing problem about role of cluster enviror	ment on circumstellar disk
properties, brown dwa	rf formation and na- ture of mass distribution in sub-stellar doma	in. We use the deepest and
widest (1.5° diameter)	Subaru Hyper Suprime-Cam observations to study two stellar fe	edback-driven massive star
forming regions, Cygnu	s OB2 (in r2, i2, z and Y filters) and IC 1396 (in r2, i2 and Y filters) a	nt < 2 kpcs from the Sun. We
obtain good quality HSC sources to find an age of 5 ± 2 Myrs for Cygnus OB2. We adopt a multi-wavelength approach		
using mid-IR and near-	IR data to obtain a substantial population of disk-bearing sources	in the region. A low circum-
stellar disk fraction (16	6%) is obtained for the central 18' radius area. We also find 19 ne	ew proplyds in Cygnus OB2.
Both these results sug	gest that external photoevaporation drives disk dissipation in Cygr	nus OB2. Since our next aim
is to investigate how st	tellar feedback affects brown dwarf regime, we study the central	22' radius region of IC 1396
using multi-wavelength	data including HSC data. We find 62 brown dwarf members using r	nachine learning techniques
and use them to determ	nine mass distribution in the region. A comparative study of star-to-	brown dwarf ratio in IC 1396
(\sim 6), along with 14 ot	her star form- ing regions with diverse cluster environments sugg	ests that factors like stellar
density and UV flux do	affect brown dwarf formation efficiency. This study, with the deep	est survey of two prominent
regions provides conclu	usive evidence of how low-mass star population is affected by feed	lback generating factors and
will pave the way for fu	rther studies.	

Thesis		

Study of UV-bright stars in Galactic globular clusters using Ultraviolet Imaging Telescope (UVIT) observations Galactic globular clusters (GCs) are old (~12Gyr) and dense stellar environments consisting of thousands to millions of stars. They host almost entire evolutionary phases of old stellar populations and are ideal for studying the formation and evolution history of low-mass stars. The ultraviolet (UV) emission in GCs is mainly dominated by the hot sources of the cluster which are either evolved (e.g., He-burning horizontal branch (HB) stars, post-HB stars, post-AGB stars, AGB-manque stars, and white dwarfs, etc.) or exotic (e.g., blue straggler (BS) and blue hook (BHk) stars) stellar populations that have formed through the dynamical interactions in the dense environment of the cluster. We have studied the UV-bright sources of five Galactic GCs using four far-UV (FUV: 1500 - 2000 A) and three near-UV (NUV: 2000 - 3000 A) filters of the Ultraviolet Imaging Telescope (UVIT) onboard India's first space observatory, AstroSat. The UV/UV-optical colour-magnitude diagrams (CMDs) were constructed to study the evolutionary status of the UVbright sources of the observed GCs. The HB, hot post-HB, hot BS, and WD stars dominated the FUV-optical CMDs, whereas the NUV-optical CMDs consist of cooler sources (e.g., main-sequence, SGB, RGB, and AGB stars) along with the sources observed in the FUV-optical CMDs. The He abundances of HB stars in three GCs were estimated by matching the observed and model HB stars on the UV and/or UV-optical CMDs, which were found in the range of 0.247-0.350 dex, 0.252-0.265 dex, and 0.247-0.310 dex for NGC 7492, NGC 5272, and NGC 6205, respectively. We could identify several new hot extreme-HB, post-HB, and extremely low mass WD stars, which have either evolved from HB mass less than 0.55 Msun or evolved in a binary system in the dense cluster environment.

ASI2025_130	Belinda Damian	Contributed Talk
	Thesis	

From stars to brown dwarfs: A journey through diverse star forming worlds

The formation and evolution of low-mass stars and brown dwarfs is an intricate process orchestrated by the environmental conditions in which they form. While low-mass stars are a dominant product of the star formation process, brown dwarfs occupy a unique position, bridging the gap between low-mass stars and planets. Identifying and exploring these cool objects aids in understanding their dominant formation mechanism and tracing the very low-mass end of the initial mass function (IMF). In this thesis, we explore substellar objects across diverse environments from nearby low-mass clusters to distant feedback-driven massive regions. Using a novel water-band photometry technique, we identify ultra-cool dwarfs with high efficacy, verified through follow-up spectroscopy with facilities like IRTF-SpeX and GTC-EMIR. We also use deep multiband photometry from various facilities, including DOT-ADFOSC, to compare wide-wavelength SEDs with atmospheric models. Spanning a broad mass range, we probe the IMF down to the planetary regime and find its form consistent across environments. Additionally, we analyze the properties of disks around young stellar objects by examining their distribution relative to ionizing sources and their dependence on host star properties. Our findings confirm that feedback from massive stars affects disk evolution and that UV radiation field strength dictates the extent of this influence. In dissecting the formation and evolution of low-mass stars and brown dwarfs across varied environments, this thesis advances our understanding of IMF behavior, brown dwarf formation, and disk evolution, providing a crucial link to planetary formation around low-mass objects.

ASI2025_363	Gourav Banerjee	Contributed Talk	
Thesis			
	Optical spectroscopy of classical Be stars in the Galaxy		
A classical Be (Be) star is a massive B-type main sequence star surrounded by a geometrically thin, equatorial,			
gaseous, decretion disc orbiting in Keplerian rotation. Spectra of Be stars show emission lines of different elements,			
studying which we can gain insights about their circumstellar discs and the central star itself. Mathew et al. (2011)			
performed a slitless spectroscopic survey to study the spectral features of 150 Be stars in open clusters. Their study			
motivated in performing further spectroscopic surveys of Galactic Be stars in different environments. My PhD research			
focused on the study of field Be stars in the Galaxy using optical spectroscopy, obtaining data from HCT facility,			
Ladakh and multi-epoch spectra from the 1-m CZT facility, VBO, IIA. We produced an atlas of all major emission lines			
found in a large sample of 115 Galactic field Be stars (Banerjee et al. 2021) using the HCT facility. Then, we (Banerjee			
et al. 2024) further explored these stars to better understand their disc properties. Our evaluation of the electron			
density in Be star discs using Balmer decrement values indicate that their discs are generally optically thick in nature			
with electron density (r	n_e) in their circumstellar envelopes (CEs) being in excess of 10^ \sim	13 cm^-3 for around 65% of	
the stars. Another stud	y of ours (Banerjee et al. 2022) focused in understanding the disc	transient nature of Be stars	
through continuous monitoring of their Ha line profile variations for 5 consecutive years (2015 2019) using the 1-m			
facility at Kavalur. Our results suggested that 4 among the 9 sample stars are possibly undergoing disc-loss episodes			
and one other star might be passing through disc formation phase, rest 4 stars may be hosting a stable disc presently.			
These results further motivated to start two new projects, which I am currently leading as PI from VBO, Kavalur as a			
PDF at IIA.			

ASI2025_430	Prerana Biswas	Contributed Talk
	Thesis	

Unravelling the kinematics, dynamics and structure of galaxies using HI - 21cm observation Several HI-21cm interferometric observations of nearby galaxies in recent decades have comprised a large dataset. To assess the completeness, coverage of these sources and potential of archival data, we created a sample of 515 galaxies from GMRT (Giant Meterwave Radio Telescope) archive, focusing on good-quality HI spectral line data. We plan to analyse this data uniformly to explore different science cases through the GMRT ARChive Atomic gas survey (GARCIA), starting with an analysis of a pilot sample of eleven galaxies. With the pilot sample, we first identified warm and cold phases in ISM through Multi-Gaussian decomposition method. Our method distinguishes different phases at a lower SNR of 5, unlike previous studies that were limited to SNR 10 or above, enabling better detection of cold gas in outskirts and warm gas in central regions. Further, we present 3D kinematical models of these galaxies by fitting Tilted-ring model to 3-dimensional data cubes and build a robust technique for galaxy mass modelling. For the first time, we combined 3D modelled rotation curve, stellar kinematics derived using Multi-Gaussian Expansion technique and Jeans Anisotropic Modelling, our own-developed method for gas contribution; for doing mass modelling via MCMC optimisation method. Additionally, we investigated kinematic and morphological lopsidedness of galaxies and checked consistency between morphological and kinematic halo perturbation parameters derived from 3D kinematic modelling, unlike previous studies. Moreover, our robust modelling techniques are further applied to a larger number of sources from CALIFA survey, allowing us to revisit Baryonic Tully-Fisher relation, where we observed an indication of a shallower slope. These studies, initially on pilot samples, will be extended to data-products from future batches of GARCIA. Beside that, in upcoming era of large interferometers like Square Kilometer Array (SKA), archival visibility data will facilitate revisiting raw data, applying improved calibration techniques, and exploring new algorithms.

17th February 2025 Parallel Session – High Energy Phenomena, Fundamental Physics and Astronomy II + Thesis [Chairperson: Preeti Kharb] [Time: 11:45 - 13:00]

ASI2025_197	Vivek Kumar Jha	Contributed Talk	
Thesis			
Inve	Investigating the Nature and Structure of Inner Regions in Active Galactic Nuclei		
The innermost regions of	The innermost regions of Active Galactic Nuclei (AGN) are critical for understanding galaxy evolution and the dynamics		
of matter near a Superr	of matter near a Supermassive Black Hole (SMBH). Yet, due to smaller angular projections, it is very difficult to resolve		
these regions. This thesis explores indirect methods to understand these objects. We use the reverberation mapping			
technique to estimate accretion disk sizes for a sample of AGN, finding that the computed disk sizes are, on average,			
3.9 times larger than the Shakura Sunyev (SS) standard disk model predictions. We also find a weak correlation			
between the obtained accretion disk sizes and the SMBH mass. We present initial results from a new accretion disk			
monitoring program to probe the accretion disk structure of Super Eddington Accreting AGN. We report that the disk			
sizes are about 4 times larger than the SS disk model. We calibrate the narrow-band photometric reverberation			
mapping (PRM) technique to develop tools for a large systematic narrow-band PRM project. We use simulations to			
test the effect of cadence, variability of the light curves, and the length of light curves in recovering the reverberation			
lags. We study the dichotomy between AGNs with and without detected jets using the method of microvariability			
observed in the accretion disk continuum. We find that AGNs with confirmed jets are about 3 times more variable on			
short time scales than the AGNs without a confirmed jet. By performing statistical analysis on a large sample of low			
luminosity AGNs, we find that the NLSy1 galaxies are more likely to have outflow signatures than their broad-line			
counterparts, hinting toward the disk wind origin of the material in BLR. We find that the principal components for			
NLSy1 galaxies differ from the BLSy1 galaxies, suggesting that the NLSy1 galaxies could be occupying their own			
parameter space.			

ASI2025_212	Dimple	Award Talk
Justice Oak Best Thesis Award, Honorable Mention Talk		
Multiwavelength studies of gamma-ray bursts and their associated counterparts		

Gamma-ray bursts (GRBs) are one of the most luminous transient astrophysical phenomena in the Universe, with isotropic equivalent energies reaching up to 10⁵⁴ ergs. GRB prompt emission spectra typically span the gamma-ray energy range from keV to MeV, exhibiting durations that range from milliseconds to several minutes. GRBs have been detected at cosmological redshifts over 9, offering a window to probe the early universe. Despite several decades of intense observational and theoretical study, fundamental questions regarding the emission mechanisms, progenitor systems, central engines, relativistic jet launching mechanisms, and physical processes governing GRBs remain open challenges. A central yet unsolved problem in GRB research is the classification of these energetic explosions. Different classification schemes based on properties such as duration, fluence, spectral lags, afterglow characteristics, host galaxy types and locations, and other features have been proposed. However, it remains unclear how effectively these classification systems correlate with intrinsically distinct classes of GRB progenitors and central engines. This thesis investigates and critically evaluates various GRB classification methods using a multi-wavelength dataset encompassing observations spanning gamma-ray, X-ray, and optical wavelengths. We also utilised the machine learning algorithms to disentangle various classes of GRBs and to better understand their underlying physical properties, revealing subtle patterns that indicate potential links between fluence, duration, and light curve structures. Our analysis further identified five distinct classes in the GRB population using multiple catalogs and revealed two distinct classes of kilonova-associated GRBs. Future gravitational wave observations will play a crucial role in advancing our understanding of GRBs. By combining gravitational wave observations with electromagnetic observations across the spectrum in the near future, we can gain unprecedented insights into the nature of these enigmatic phenomena.

ASI2025_372	Soumen Mondal	Contributed Talk
	High Energy Phenomena, Fundamental Physics and Astronom	y

Observational imprints of accretion disk on observed gravitational wave data from LISA.

The proposed work aims to investigate and compare the detectability of the effect of massive accretion disks on the emitted gravitational wave from extreme/intermediate mass ratio inspirals for different types of accretion models of the disk, and thereby to check whether they are distinguishable in the LISA band. The hydrodynamic drag of the disk significantly modifies the motion of the companion as a result of the emitted wave changes in amplitude and phase. We found that these changes are detectable through the last few years of observation by LISA (in some cases as small as 6 months) for EMRIs residing within redshift z = 1 from the detector and for the accretion rate of the primary black hole of the order of one Eddington. We further identify the orbital parameters evolving under most general ellipticalorbits in the equatorial plane for which the magnitude of disc-torque is greater and that can potentially enhance detectability of accretion-disc effect on the observed GW-signal. Prioritizing such orbital-configuration, we obtain substantial impact on the dephasing and high signal-to-noise-ratio (SNR) in emitted signals. Employing a threshold-SNR (>8), we then identify the detectability trend of those systems in LISA-band. Moreover, the drag effect and hence the detectability of the emitted GW is also sensitive to the hydrodynamical model of the disc. Therefore, we vary the disc parameters, accretion rate, and duration of observation of E/IMRIs, and find that in comparison with other disc models, transonic solution offers relatively better observable signatures in detecting the gas-rich E/IMRI's within the LISA band. Hence, the study will be important in understanding the orbital-evolution, predicting orbital-configuration and E/IMRI formation pathways, and finding detectability for such gas-rich E/IMRIs. Such observations will also help one to probe the nature of the accretion flow and verify various paradigms of accretion physics.

ASI2025_440	Gaurav Waratkar	Contributed Talk
High Energy Phenomena, Fundamental Physics and Astronomy		
Low-latency infrastructure for rapid dissemination of LIGO-Virgo-KAGRA gravitational-wave alerts for Multi-		
Messenger Astronomy		
The LIGO-Virgo-KAGRA collaboration (LVK) is in the middle of its fourth observing run, detecting a new gravitational		
wave (GW) event every few days. Rapid searches for the next GW counterpart, including gamma-ray bursts (GRBs)		
and kilonovae, continues. Semi-automated data products are being publicly broadcast to the world in 30 seconds,		
providing localization and source properties, enabling multi-messenger and multi-wavelength follow-up observations.		
I will provide an overview of LVK's low-latency alert infrastructure, highlighting recent upgrades made for this observing		
run which include reduced latency aimed at pre-merger alerts and the publication of low-significance events. I will		
also discuss the performance of these data products, validated through the Mock Data Challenges (MDC). To		
capitalize on the increasing sensitivity of gravitational-wave (GW) detectors and electromagnetic observatories, the		
LVK collaboration has adopted the RAVEN (Rapid, on-source VOEvent Coincidence Monitor) pipeline. Since the		
second observing run, RAVEN has enabled real-time coincidence searches between GW events and external signals		
such as gamma-ray bursts (GRBs). I'll also discuss recent upgrades to the RAVEN pipeline and future plans, including		
expanded offline capabilities and the integration of new experiments to detect a wider set of transients, such as fast		
radio bursts and neutrino events, as these sources become available.		

ASI2025_312	Abinash Suklabaidya	Contributed Talk
	High Energy Phenomena, Fundamental Physics and Astronom	у
Linking	Polarization and Photometry: Advancements in Asteroid Diamete	r Estimation
Determining the accur	ate diameter of asteroids is crucial for understanding their physic	al properties and dynamical
evolution. Traditional n	nethods often rely on empirical relations between diameter, albee	do, and absolute magnitude.
However, these metho	ds require accurate albedo measurements, which can be challer	nging to obtain. In this study,
we propose a novel approach to estimate asteroid diameters by combining polarimetric and photometric		
observations. We explore the relationship between asteroid diameter, polarization minimum, and absolute		
magnitude. By analyzing a comprehensive dataset of asteroids, we have derived an empirical formula that connects		
these parameters. This new method offers a potential advantage over traditional methods, as it does not require prior		
knowledge of the asteroid's albedo. Our findings provide valuable insights into the scattering properties of asteroid		
surfaces and contribute to the development of more accurate techniques for asteroid characterization. This work has		
the potential to enhance our understanding of the asteroid population and its role in the solar system's history.		

17th February 2025 Parallel Session – Galaxies and Cosmology II [Chairperson: Sachindra Naik] [Time: 11:45 - 13:00]

ASI2025_494	Anishya Harshan	Contributed Talk	
	Galaxies and Cosmology		
	Can Dwarf Galaxies Reionise the Universe?		
The identification of the	e sources of reionisation of the Universe is one of the major goals of	f JWST. Dwarf galaxies in the	
epoch of reionisation,	with their abundance and high specific star formation rates are t	hought of as ideal source of	
reionising photons. The	e low gravitational potential of dwarf galaxies could also facilitate	the escape of these ionising	
photons to the inter-ga	llactic medium and thus reionising the IGM around them. Howeve	er, such galaxies prove to be	
difficult objects to study given their faintness even with ultra-deep surveys with powerful space telescopes. In the			
CANUCS survey, we harness the magnifying power of the galaxy clusters as gravitational lenses along with JWST to			
provide a magnified vie	provide a magnified view of the early Universe. In this talk I will present the properties of dwarf galaxies (5 <log m*<8)<="" td=""></log>		
and Lyman alpha emitt	and Lyman alpha emitters selected using medium band NIRCAM filters and followed up with NIRSpec sprectroscopy		
at redshift z>5. I will present their production efficiency of ionising photons, star formation histories and gas kinematics			
to understand what Lyman alpha emitters can tell us about the timeline and morphology of reionisation and to answer			
the question if dwarf ga	alaxies can reionise the universe.		

ASI2025_743	Abhirup Datta	Contributed Talk
Galaxies and Cosmology		
uGMR	T constraints on the redshifted HI 21-cm signal power spectrum a	t z = 9 (EoR)
The redshifted 21-cm	signal from neutral hydrogen is a crucial probe for studying the ϵ	early Universe, spanning the
Cosmic Dawn (CD) to	the Epoch of Reionization (EoR). Detecting this faint signal at low	v radio frequencies is highly
challenging due to do	ominant foregrounds—galactic and extragalactic, ionospheric o	distortions, radio frequency
interference (RFI), and	d instrumental systematics. Despite these challenges, ground-	based telescopes such as
LOFAR, MWA, and HE	RA have made significant progress, bringing the detection of this	s cosmological signal within
reach. In this work, we	present observations of the ELAIS-N1 field at Band-2 (120–250 MH	z) using the upgraded GMRT,
a pathfinder for the SKA	A. With 32 hours of observations covering a bandwidth of around 1	00 MHz, we achieved an off-
source RMS noise leve	l of 237 μ Jy/beam and an angular resolution of 11.45 arcseconds ir	n the final image. Our catalog
comprises 1027 sourc	es with a flux density threshold of 5σ at a central frequency of 18	3 MHz. We have derived the
source count from this catalog, which is consistent with other observations at different frequencies. We are presenting		
the first constraints on the 21-cm signal at high redshift z = 9, using the foreground removal technique to mitigate		
foregrounds. These results are preliminary and demonstrate the capabilities of uGMRT in probing the cosmic HI signal		
from EoR.		

ASI2025_606	Ananda Hota	Contributed Talk
	Galaxies and Cosmology	

GMRT observation of objects discovered by Indian citizen scientists since 2013

Since its launch in 2013, RAD@home Citizen Science Research (CSR) Collaboratory has trained thousands of participants-from undergraduates to postgraduates and beyond-in foundational astronomy, with a focus on radio continuum astronomy, using publicly accessible data and tools, all without dedicated funding or resources. This pioneering Indian citizen science initiative has enabled participants to develop a strong understanding of extragalactic objects, leading to the discovery of unique objects. Among these are Odd Radio Circle-like radio rings, collimated synchrotron threads, compact jet structures such as burls, radio bubbles from jet-galaxy interactions, episodic feedback signatures during galaxy mergers, rare giant radio spirals from Speca-like disk galaxies, and large relic lobes (100-200 kpc) displaced by ram pressure stripping. These discoveries have pushed the boundaries of our knowledge on AGN jet feedback and merger-driven galaxy evolution, highlighting RAD@home's role in contributing to frontier scientific questions while creating a model for human-resource development at the onset of the SKA era in India. The most significant discoveries, showing potential for groundbreaking insights, were prioritised for dedicated follow-up observations with the GMRT. Through four accepted proposals (GOOD-RAC), RAD@home's team acquired 71 hours of multi-frequency GMRT data for 21 sources, uncovering previously unseen features in each source through highquality deep GMRT radio maps. In this talk, we will present our initial results from deep GMRT observations, providing new insights into these objects. The multi-frequency data have enabled precise spectral analysis, offering a clearer understanding of their physical properties and raising important questions for future study. These findings have important implications for understanding various radio galaxy types and their environmental interactions, paving the way for future research with the SKA. RAD@home serves as a pioneering citizen science initiative, fostering scientific engagement across India and establishing a sustainable model for public involvement in large-scale astronomy.

ASI2025_135	Masroor Bashir	Contributed Talk
	Galaxies and Cosmology	
Testing Statistica	al Isotropy and Gaussianity of ACT DR6 Convergence data using M	orphological statistics
We carry out a comp	prehensive hierarchical multi-scale morphological analysis to t	est statistical isotropy and
deviation from Gaussi	anity of large scale matter distribution using data of the conver	gence map provided by the
Atacama Cosmology Telescope data release 6. We use a suite of morphological statistics consisting of Minkowski		
functionals, contour Minkowski tensor and Betti numbers for the analysis. We devise a general methodology for		
inferring the statistical significance of deviations of morphological statistics based on the persistence of the deviations		
across threshold ranges and spatial resolutions, and taking into account correlations amongst the statistics and the		
nature of the information that each statistic carries. From analysis of the full dataset, and hemispherical regions, we		
find consistency with statistical isotropy. This is not surprising since deviations in smaller sky regions tend to get		
washed out when averaged over larger regions. A local analysis of smaller sky patches reveals some patches that		
exhibit statistically significant persistent departures from statistical isotropy.		

ASI2025_541	Mohit Raj Sah	Contributed Talk
	Galaxies and Cosmology	

Cosmology of the supermassive black holes using anisotropic nHz gravitational wave background

The formation and evolution of supermassive black holes (SMBHs) remain an open question in cosmology. Detecting nanohertz (nHz) gravitational waves from supermassive black hole binaries (SMBHBs) via pulsar timing arrays (PTAs) offers a promising method for studying SMBH formation over cosmic time. The gravitational wave (GW) background generated by the superposition of the GWs from individual supermassive black hole binaries (SMBHBs) is expected to be anisotropic in nature. Moreover, since these binaries reside at the center of galaxies, the distribution of the anisotropic signal is expected to follow the galaxy distribution in the universe. Therefore, the study of the angular power spectrum of the stochastic gravitational wave background (SGWB) as well as the cross-correlation of the SGWB signal with galaxy distribution presents a promising avenue for investigating the cosmic evolution of the SMBH. This approach can also help distinguish the origin of the SGWB, whether it is primarily astrophysical or cosmological. In our work, we demonstrate how studying the anisotropy of the SGWB can shed light on both the source of the SGWB and the cosmic evolution of SMBHs.

17th February 2025 Parallel Session – Facilities, Technologies and Data science II [Chairperson: Vikram Rana] [Time: 11:45 - 13:00]

ASI2025_383	Abhinav Narayan	Contributed Talk	
Facilities, Technologies and Data science			
GARUD	A: A Deep Learning based automated radio data analysis pipeline	for the GMRT	
Radio observations are	essential for understanding galaxy formation and evolution, yet lo	w-frequency interferometric	
observations are often	hindered by radio frequency interference (RFI) and system failure	s, making data processing a	
time-intensive challen	ge. With next-generation radio telescopes producing increasingly	large datasets, the demand	
for automated data pr	ocessing solutions has grown critical. We present GARUDA (Ger	neric AI-based GMRT-tUned	
Radio Data Analysis pipeline), a novel automated pipeline designed for uGMRT data reduction. Written in Python and			
utilizing modular CASA for calibration, GARUDA includes GNET, our custom Deep Learning based RFI detection			
model. With only two t	unable parameters, GNET ensures flexibility and ease of use acro	ss diverse observations and	
frequency bands. The	pipeline handles system issues and performs RFI excision, prod	ucing high quality calibrated	
data ready for imaging	data ready for imaging. GARUDA processes 10-12 GB GSB data in 20-30 minutes and approximately 400 GB GWB		
data in under three hours on standard GPU workstations, achieving rapid and reliable results. In this talk, I will discuss			
GARUDA's capabilities and showcase results, including some of the deepest GMRT radio continuum images at the L-			
band, HI emission in galaxies, and one of the most sensitive galactic HI absorption lines (using frequency switching			
observation with GWB).			

ASI2025_510	Viren Mandaogane	Contributed Talk
	Facilities, Technologies and Data science	
	LiBRA: A Novel Low Frequency Wideband Antenna for Radio Astro	nomy
We present the design	n and performance of the Linearly Polarised Broadband Radio An	tenna (LiBRA), a novel low-
frequency antenna de	veloped for radio astronomical observations. LiBRA combines mu	ltiple bowtie elements with
varying flaring angles,	achieving wideband performance from 80 to 320 MHz with a ret	urn loss below -10 dB. The
design was simulated using the FEKO Student Edition, with an optimization algorithm implemented to ensure high		
radiation efficiency across the entire bandwidth. This innovative design was recognized among the top three in India in		
the SWAN Antenna Design Challenge 2020-2021. A prototype of LiBRA was constructed and tested, demonstrating		
optimal performance in a band from 70 to 290 MHz. We summarize the reflection coefficient and radiation pattern		
results and present observations at low radio frequencies to validate its performance. Additionally, we discuss		
potential applications of LiBRA across various radio astronomical observations and outline directions for its future		
development.		

ASI2025_110	Amar Nath	Contributed Talk
Facilities, Technologies and Data science		
QMIST: A Software Pipeline for the Detection of Quasi-periodic Microstructures in Pulsar Emission		

Pulsar radio emission exhibits variations at diverse timescales, spanning from months down to the nanosecond level. One of the shortest timescale variations among these, known as microstructures, is a distinctive feature that has been discovered in emission from a variety of pulsar categories. While these manifest as narrow, often quasi-periodic, features in numerous individual pulses of a pulsar, not all pulses exhibit this characteristic. The study of these structures can provide valuable information to understand the pulsar emission mechanism. However, the manual hunt for these microstructures in an intensity time series containing thousands, and sometimes millions, of pulses is a laborious and time-intensive task. To streamline this process, we have designed and developed a Python-based pipeline, called QMIST, to detect quasi-periodic microstructures in a given radio pulsar time series data. We provide a comprehensive description of the algorithm along with its caveats and further present a survey of microstructure periodicities in 24 young and normal pulsars using this pipeline.

ASI2025_422	Keerthipriya Sathish	Contributed Talk
	Facilities, Technologies and Data science	

Dual polarised Fantail dipole Antenna Design for APSERa an S-band Precision cosmology experiment

The Cosmic Microwave Background (CMB) radiation serves as a critical source of information in understanding the evolution and composition of our Universe. Theoretical predictions suggest the presence of inevitable faint deviations referred to as 'spectral distortions' in the CMB spectrum from that of a blackbody. One such distortion is the cosmological recombination radiation (CRR), originating from photons emitted during the formation of hydrogen and helium atoms in the Epoch of Recombination (ERA) (redshifts 900 < z < 8000) in the early universe. In this work, we present a novel scalable broadband dual polarised fantail shaped dipole antenna design motivated by the detection of these distortions within the 2.5–4 GHz range. The antenna has a sensitivity of the order of 1 part in 10^3 over the entire frequency band, offering a sensitivity improvement of over an order of magnitude compared to standard broadband antennas. This sensitivity was validated through a custom-designed pipeline that emulates the convolution and interaction of the sky and ground with the antenna's beam pattern and return loss. While it does not yet achieve the sensitivity required for direct detection of cosmological recombination radiation, the antenna fulfills essential design criteria for experiments targeting absolute sky spectrum measurements at millikelvin level. This can aid in refining foreground models for global detection experiments, and also address the problem of excess radio background at 3.3GHz reported by ARCADE-2 experiment.

ASI2025_727	Arul Pandian B	Contributed Talk
	Facilities, Technologies and Data science	
A Novel L	PDA Array for 130 - 350 MHz Pulsar observation at Gauribidanur -	Initial Results
We have developed a new	w array to make pulsar observations in the 130 MHz to 350 MHz band us	sing evenly spaced log periodic
antennas at the Gauribid	lanur observatory. Large aperture arrays such as the upcoming SKA lo	w-frequency telescope will be
implemented with randor	nly spaced antennas. Such random distribution would work better for lar	ge arrays. However, an optimal
arrangement of antennas	may differ for arrays with fewer elements. For observation at low radio f	requencies, covering the upper
200 MHz of SKA1-Low b	ands at the Gauribidanur observatory, a novel tightly spaced antenna ar	ray configuration is developed.
We have incorporated a newly built RF pipeline into the existing digital receiver for this array. We have developed a new software		
backend for real-time data reduction and archival purposes, suitable for transient search and high-time resolution pulsar		
observations. This new array is designed to be sensitive for meridian transit observations, thus allowing polarimetric observation		
of all sources in the visible sky in a 24-hour observation while reducing interference arising from the low elevations. Hence, a		
specific observation strategy is developed considering the instrumental characteristics. A matching data reduction and analysis		
pipeline is also developed and tested. This talk will present salient features of the work, highlighting the details of the processing		
pipeline, array sensitivity, and our initial results from observing continuum and transient sources, current status, and future plans.		

17th February 2025 Parallel Session – Sun, Solar System, Exoplanets and Astrobiology III [Chairperson: Sudha Rajamani] [Time: 14:00 - 16:00]

ASI2025_629	Soumyaneal Banerjee	Contributed Talk	
	Sun, Solar System, Exoplanets, and Astrobiology		
Sulfuric Acid and Sulfu	r Dioxide vapor concentrations in the lower atmosphere of Venus (using the Radio Occultation	
	Technique		
Radio Occultation (RO) experiments by the Akatsuki spacecraft have been used to prot	be the lower atmosphere of	
Venus and study the su	Ilfuric acid vapors typically present between the altitudes of 35-50	km, below the Venus cloud	
deck. H2SO4 and SO2	are two of the major trace species found in the lower atmospher	e of Venus. The notoriously	
high density and opacit	y of the Venus atmosphere make visible, IR and UV observations p	ractically impossible below	
the cloud top region of	65-70 km. The stable X-band radio signal (~8.4 GHz) emitted by Ξ	the transmitter of the Radio	
Science (RS) payload o	f the Akatsuki Spacecraft traverses the Venus atmosphere and suff	fers intensity loss and phase	
change. The loss in sig	gnal intensity occurs due to refractive effects and absorption by t	he Venus atmosphere. The	
primary X-band absorb	er is H2SO4 vapor. The signal attenuation due to refractive effects a	and absorption by the known	
X-band absorbers in V	enus are subtracted from the total signal loss. The residual abso	orption loss, due to H2SO4	
vapors, is then convert	ed into mixing ratio values, thereby providing the vapor abundance	e in the region. A new signal	
processing algorithm has been used to derive the signal attenuation from the raw data files. Additionally, SO2			
concentrations from 35-55 km region are also estimated considering our current understanding that H2SO4 vapor			
concentration decreases exponentially to zero above 50 km altitude, following its saturation vapor pressure curve.			
This provides the SO2 vapor concentration in the range of a few tens to a few hundred ppm, agreeing with the existing			
studies.			

ASI2025_345	Saugata Barat	Contributed Talk	
Sun, Solar System, Exoplanets, and Astrobiology			
First observat	ions of young transiting planet atmospheres: Uncovering signature	s of early evolution	
Transiting planets your	ger than 100 million years offer a unique opportunity to catch fresh	nly baked products of planet	
formation which are u	ndergoing early evolution. We present first ever atmospheric char	racterization results for two	
young (20-30 Myr old)	young (20-30 Myr old) transiting planets (V1298 Tau b and c) using HST (published). We will also unveil the JWST		
transmission spectrum	n of V1298 Tau b (submitted ApJ). We will present novel methods t	to estimate the planet mass	
directly from the transmission spectrum, which has proven to be critical for young transiting planets where radial			
velocities are challen	ging due to stellar activity induced jitter. We will compare th	he mass and atmospheric	
composition of the two young transiting planets with their mature counterparts as well as with each other to interpret			
our findings in the context of early atmospheric evolution. We will also present the first constraints on internal entropy			
of a transiting exoplanet from our observations and compare with planet formation and evolution models. Ultimately,			
we will discuss theoretical evolutionary models currently being developed which can reconcile the observed mass,			
composition and intern	al entropy of these young transiting planets with the mature exopla	anet population	

ASI2025_131	Prakruti Sudarshan	Contributed Talk
	Sun, Solar System, Exoplanets, and Astrobiology	

How stellar irradiation affects the structure of a planet forming disk

Protoplanetary disks observed in mm-continuum and scattered light show a variety of substructures. While embedded planets are a common explanation, various physical processes in the disk could also trigger such features. One such possibility that has been previously theorized for passive disks is the irradiation instability: the flaring disk solution may become unstable as directly illuminated regions puff up and cast shadows behind them. This in turn manifests as bright and dark rings in the outer regions of the disk. It has been studied with different methods — time-dependent linear theory, Monte Carlo radiative transfer codes, and in 1+1D. Unfortunately, there is little consensus in previous work involving 2.5D simulations owing to different thermal treatments and equilibrium states. We investigate this problem with global axisymmetric 2.5D hydrostatic+dynamical simulations including realistic radiation transport with frequency-dependent irradiation and flux-limited diffusion. We compare our treatment with the previously used moment transfer methods and the simpler radiation forcing to elucidate the importance of correct numerical treatment for this problem. We also create scattered light images of these disks with RADMC3D and discuss the caveats of substructure induced by such an instability. We finally highlight the role of small grains and dust feedback in this context.

ASI2025_43	Anuroop Dasgupta	Contributed Talk	
	Sun, Solar System, Exoplanets, and Astrobiology		
The Ophiuchus DIsk	Survey Employing ALMA (ODISEA): Complete Size Distributions for	or the 100 Brightest Disks	
	Across Multiplicity a		
Submitted to ApJ. The	size of a protoplanetary disk is one of its most fundamental prop	erties. However, most disks	
remain unresolved, eve	en in the closest star-forming regions (distance approximately 140	-200 parsecs). In this study,	
we present the comple	ete continuum size distribution for about 100 of the brightest pro-	toplanetary disks (with dust	
masses greater than ap	proximately 2 Earth masses) in the Ophiuchus molecular cloud, ob	otained through ALMA Band-	
8 (410 GHz) observatio	ons at a resolution of 0.05 to 0.15 arcseconds (equivalent to 7 to	21 astronomical units). We	
measure the Half Width at Half Maximum (HWHM) of the dust continuum for each disk, and the radius encircling 68%			
of the flux (denoted as	of the flux (denoted as R68%R68%) using Frank profiles. This results in the largest flux-limited sample of resolved		
disks in any star-form	disks in any star-forming region. We find that the full distribution follows a log-normal pattern with an HWHM		
logarithmic mean of 1.1 (equivalent to 13 astronomical units) and a standard deviation of 0.46 (equivalent to a factor			
of 2.9). Stars in close I	of 2.9). Stars in close binary systems (separation less than 200 astronomical units) have significantly smaller radii,		
with a logarithmic mean of 0.7 (equivalent to 5 astronomical units), which indicates very efficient radial drift in the			
outer regions of the disk, as predicted by models of binary systems. The disk size distribution for young embedded			
objects (SED Class I and Flat Spectrum, with age less than approximately 1 million years) is indistinguishable from			
that of more evolved Class II objects (with age of a few million years), suggesting that pressure bumps must be present			
at early stages of disk e	volution to halt the migration of millimeter-sized particles at astro	nomical unit scales.	

ASI2025_411	Trisha Bhowmik	Contributed Talk
	Sun, Solar System, Exoplanets, and Astrobiology	

Understanding planet and satellite formation with ALMA and VLT

In our solar system, terrestrial and giant planets differ in architecture and chemistry. To understand this, we must study planet-forming disks and their structural variation. As part of the ODISEA project (Ophiuchus DIsk Survey Employing ALMA), I present 55 faint disks at 0.05" (7 au) resolution and 45 brighter disks at 0.2" (28 au) resolution at 400 GHz. This study uniquely analyzes the images and radial profiles of 100 disks in a single molecular cloud, investigating how disk substructures evolve with disk sizes, mass, and SED Class. Theoretically, we anticipate a higher population of young embedded (≤ 1 Myr) featureless disks compared to evolved Class II (a few Myr) featureless disks. However, we observe a similar population of embedded (52%) and Class II (48%) featureless disks (Bhowmik et al in prep.). One explanation could be the presence of pressure bumps that halt grain growth and structural evolution in the disks. Further insight into our solar system's 200+ moons suggests that giant exoplanets may also have exo-satellites. Despite successful high-contrast imaging (HCI) of giant planets and brown dwarfs (BDs), exo-satellites remain undetected. Recently observed triple systems like ε Indi and GJ569 inspire searches for massive exo-satellites, particularly around BDs. We employ a negative fake injection technique to suppress companions' (BD or planet) brightness using observed stellar PSFs in the search for exo-satellites. Our sample includes over ten BDs and exoplanets observed by SPHERE/VLT's integral field spectrograph (IFS), targeting objects like GQ Lup B and PZ Tel B. I will present post-processed residual images treated with angular spectral differential imaging and negative fake injection. I will focus on companion surroundings, contrast curves, and mass-limited plots to identify exo-satellites around these companions.

ASI2025_386	Vignesh Vaikundaraman	Contributed Talk	
	Sun, Solar System, Exoplanets, and Astrobiology		
	Dust growth in wind-driven protoplanetary disks		
Recent models show	that disk winds efficiently transport angular momentum in the	e regions where non-ideal	
magnetohydrodynamic	magnetohydrodynamic (MHD) effects suppress the Magnetorotational Instability (MRI). Moreover, these winds		
produce complex gas f	produce complex gas flows in the disk which are further amplified by non-ideal MHD effects like the Hall effect and its		
connected processes.	connected processes. Dust evolution and dynamics are connected to the underlying gas dynamics in the disk and it		
has recently been sho	wn that complex gas flows can enhance the radial diffusion of	dust depending on the flow	
structures. We examine	ne the effect of the complex gas flows due to MHD winds on d	ust evolution including dust	
coagulation. We incor	coagulation. We incorporate gas flow structure from a 2-dimensional global, non-ideal MHD simulation into a 2-		
dimensional Monte Ca	dimensional Monte Carlo code for dust evolution to perform global simulations of dust evolution in the case of		
complex gas flows. We observe the formation of dust traps as a natural outcome of the interplay between the gas			
flows and dust evolution. We compare our results with the traditional viscous evolution models for disk evolution and			
the recent analytical models describing disk winds. We discuss the conditions for planetesimal formation and its			
applicability in the dus	t traps observed in our simulations.		

ASI2025_389	Ushasi Bhowmick	Contributed Talk	
Sun, Solar System, Exoplanets, and Astrobiology			
Lightcurve Inversion: A	Analyzing the extent of feature embedding of a two-dimensional pr	ojected shape on its transit	
	lightcurve.		
The increased sensitive	<i>v</i> ity and resolution of space-based telescopes has led to obse	rvations of deviations from	
spherical exoplanet tra	nsits, caused by tidal distortions, disintegrating planets etc. There	fore, a proper understanding	
of geometrical anoma	lies in photometric lightcurves is of key importance. The light	curve inversion problem is	
considered to be ill-p	osed, however, it has been addressed in great detail especially	in the context of asteroid	
lightcurves. Since a nur	nber of different shapes may give rise to identical lightcurves, we n	eed to identify what features	
of a two-dimensional (2	2D) projected shape can be successfully embedded in its transit lig	htcurve. We generate a large	
number of arbitrary sha	apes and their transit lightcurves using Yuti (Bhowmick and Khaire	2024). As a demonstration,	
we use the complexity	we use the complexity parameter defined in Chen and Sundaram 2005 as a scalar metric for characterizing a 2-D		
shape. We design a De	shape. We design a Deep Neural Network (DNN) and show that it retrieves the complexity parameter with error <15%		
from lightcurve alone.	The error in retrieval increases for shapes with larger complexit	y (C>0.3) depicting regimes	
where shapes are dege	enerate to transit lightcurves. To capture more complex features,	we create a low-dimension	
latent-space represent	tation (Λ) of the shapes using autoencoders. We train a separate	DNN model to retrieve this	
latent-space from the	lightcurves. The capability of the DNN to retrieve Λ from the lightcurves.	ghtcurves itself reflects the	
successful embedding	successful embeddings of shape complexity in the lightcurves. The latent-space can be segregated into clusters		
depicting different 'cla	depicting different 'classes' of shapes, based on their detectability from transit. We aim to study the intra-class		
similarities and inter-	similarities and inter-class differences in shape features. The lightcurve inversion problem can be reduced to		
identification of such 'classes' which will enable us to narrow-down the geometrical properties of the shape based on			
transit lightcurves.			

17th February 2025 Parallel Session – Stars, Interstellar Medium, and Astrochemistry in Milky Way III [Chairperson: Drisya Karinkuzhi] [Time: 14:00 - 16:00]

ASI2025_587	Saikhom Pravash Singh	Contributed Talk
A012020_007		
	Stars, Interstellar Medium, and Astrochemistry in Milky Way	
Dust grain alignment a	nd disruption mechanisms in G34.43+0.24 using thermal dust pol	arization observations from
	JCMT/POL-2	
Polarization of starlight	and thermal dust emission due to aligned non-spherical grains hel	ps us to trace magnetic field
(B-field) morphology ir	n molecular clouds and to constrain dust grain properties and th	ieir alignment mechanisms.
Alignment of grains ba	sed on RAdiative Torques (RATs) is the most acceptable mecha	inism that can explain grain
alignment from diffuse	d interstellar medium to star-forming regions. In this work, we st	udy the grain alignment and
disruption mechanisms	s in a filamentary infrared dark cloud G34.43+0.24 which harbors m	ultiple cores using polarized
thermal dust emission	observations from JCMT/POL-2 at 850 μm in three sub-regions	as North having MM3 core,
Center having MM1, MM2 cores and South having no core. We find decrease in polarization fraction (P) with increasing		
total intensity, known	as polarization hole or depolarization which can be caused by	decrease in grain alignment
efficiency or magnetic	field tangling due to turbulence or both. To disentangle the effect	of magnetic field tangling on
polarization hole, we e	stimate polarization angle dispersion function. Our analysis finds	depolarizations in North and
Center are dominantly	due to decrease in net alignment efficiency of grains in denser re	gions but in South magnetic
field tangling is significa	ant to cause depolarization. To test whether RAT Alignment (RAT-A) mechanism can reproduce
the observational data	, we estimate minimum size of aligned grains using RAT theory.	We find RAT-A can explain
depolarization in North and Center where B-field tangling effect is less significant, except the MM3 (North), MM1 and		
MM2 (Center) cores where we find evidence of RAdiative Torque Disruption (RAT-D) that reduces P. We also estimate		
the effect of enhanced magnetic relaxation on RAT alignment for second time in a filament and find evidence of		
Magnetically enhanced RAT (M-RAT) alignment mechanism that can explain the observed high P of around 20% in		
outer parts of the filament.		

ASI2025_573	Bhaskarjyoti Barman	Contributed Talk	
	Stars, Interstellar Medium, and Astrochemistry in Milky Way		
Insights fr	om Molecular Clouds: Turbulence, Magnetic Field and other Physi	cal Parameters	
Molecular clouds repre	esent the coldest and densest regions of the interstellar medium,	serving as the primary sites	
for star formation. The	intricate process of star formation is influenced by various factors	, particularly turbulence and	
magnetic fields. These	factors regulate the development and evolution of molecular cloud	s and their structures across	
both low and high-den	sity regions. Our research demonstrates a significant link betwee	n turbulence (ΔV , measured	
from FWHM of 12CO li	newidth) and size (L) of the clouds with $\Delta V \propto L^{0.30\pm0.04}$ for 22 is	solated low-mass molecular	
clouds, with gravitatior	nal forces potentially driving turbulent motions, suggesting a state c	of near-equilibrium. We have	
also observed a deper	ndence of turbulence on both mass and density at the clouds an	d the core of the respective	
clouds, where we con	sider FWHM of C18O linewidth as a core tracer. Our study also	examines the influence of	
turbulence on the aligr	ment of magnetic fields within these clouds. Our findings reveal	that clouds exhibiting lower	
turbulence (ΔV<3 km^	turbulence (ΔV <3 km ⁽⁻¹⁾) show a stronger alignment with the Galactic Plane, whereas those with higher turbulence		
(ΔV>3 km^(-1)) display a greater offset. This highlights the dynamic interaction between turbulence and magnetic			
fields in shaping the evolution of molecular clouds, supported by our theoretical calculations. Understanding these			
connections is essential for uncovering the complex processes involved in the birth of stars and advancing our			
knowledge of stellar fo	rmation mechanisms.		

ASI2025_368	Anindya Saha	Contributed Talk
	Stars, Interstellar Medium, and Astrochemistry in Milky Way	

Direct observational evidence of multi-epoch massive star formation in G24.47+0.49

Massive stars play a crucial role in the dynamical and chemical evolution of their environment by feeding the ambient interstellar medium (ISM) with material and radiation, especially during its formation stages and late evolutionary phases. This feedback is believed to regulate star formation activities in their vicinity. With their intense UV radiation, massive stars can ionize the surrounding ISM and form HII regions. The expansion of the HII regions leads to two contrasting scenarios: it can either hinder or promote star formation activity in molecular clouds. On the one hand, it can disrupt the natal cloud and inhibit future star formation processes, and on the other hand, this feedback can sweep up surrounding material into dense shells, creating massive fragments that eventually collapse to form subsequent generations of stars at their peripheries. Several studies have found observational evidence of this triggered star formation linking two generations of stars: the ionizing star and the newly formed stars at the peripheries of expanding HII regions. However, gathering evidence for triggered star formation linking multiple epochs of stars around HII regions is challenging as it is difficult to associate evolved massive stars with the next epoch of star-forming regions, each of which must show indications of ongoing star formation activity. As a result, evidence for hierarchical triggering and multi-generation star formation is scarce. In this talk, I will present our study of ring-like HII region G24.47+0.49 using ALMA data from the ATOMS survey and archival VLA 4.86 GHz data. Our analysis reveals an interesting scenario of hierarchical triggering relating three epochs of massive star formation in concentric rings of the HII region. Through detailed molecular gas kinematics analysis, we unveiled, by far for the first time, direct and unambiguous detection of an expanding outer molecular ring encircling the HII region.

ASI2025_394	Amal George Cheriyan	Contributed Talk	
Stars, Interstellar Medium, and Astrochemistry in Milky Way			
Probing the interp	lay of jets and H II regions in RAFGL2591: Insights from radio, infra	red and sub/millimeter	
	observations.		
We present a multiway	velength investigation of the massive star-forming region RAFGL25	591, located at a distance of	
3.3 kpc. It is particularly	y intriguing due to its peculiar central region, which harbours a clus	ter of protostars, H II regions	
and multiple jets; notal	oly, the extended E-W protostellar jet exhibiting thermal radio emis	sion from one lobe and non-	
thermal synchrotron r	adio emission from relativistic electrons in the opposing lobe.	To elucidate the physical	
conditions within this region, we obtained radio images at frequencies of 325, 610, and 1280 MHz using the Giant			
Metrewave Radio Tele	Metrewave Radio Telescope (GMRT) in India. The radio analysis indicates that all HII regions display spherical		
morphology and exhibit positive spectral indices, confirming their thermal nature. Additionally, we analyzed archival			
data from UKIDSS, Spi	tzer, and Herschel to complement our findings. The dust temperat	ures associated with the HII	
regions, as obtained from the analysis of the Herschel images, are found to be in the range of 20 - 60 K. The column			
densities vary between	0.6×10^{23} /cm ² to 1.6×10^{23} /cm ² . The derived masses of	the H II regions span 31 M \odot	
to 61 M☉, with dynan	to 61 MO, with dynamical timescales estimated between 0.4 to 1.4 Myrs. A photometric examination of near and		
mid-infrared point sources highlights the presence of a young stellar object population associated with the cloud.			
Furthermore, CO observations, leveraging CARMA and ALMA data, enabled the construction of moment maps that			
identify gas structures, study turbulence, and distinguish between different velocity components. This provides			
invaluable insights into the physical and evolutionary states of the sources and the ambient medium, enhancing our			
understanding of the intricate processes at play in RAFGL2591.			

ASI2025_664	DEBANGAN MAJI	Contributed Talk	
Stars, Interstellar Medium, and Astrochemistry in Milky Way			
C	Cool phase temperature of atomic hydrogen in the Galactic centre	region	
The central one-kilo-pa	arsec region of our Milky Way (MW) Galaxy is typically referred to	as the Galactic Centre (GC)	
region. Most of the pl	nysical quantities like gas density, velocity dispersion, tempera	ture, etc. in this region are	
significantly higher than those found in the disk of our galaxy. GC region cannot be seen in optical wavelengths due to			
large interstellar extinc	tion by dust in the Galactic plane. It can, however, be studied in ra	dio bands. Atomic hydrogen	
(HI) in the ISM is a tw	o-phase medium (cool & warm phase), which can provide a w	ealth of information on the	
interstellar medium (IS	M) in the GC region. Given the high temperature of the ISM in the re	egion, we expect the cold HI	
to have a significantly h	igher spin temperature than the rest of the Galaxy. HI spin tempera	ature can be measured using	
21 cm emission and ab	21 cm emission and absorption spectrum. However, the measured spin temperature is the column density weighted		
harmonic mean of those two phases. Therefore, it is very challenging to separate the contribution of the cool phase,			
and it can only provide an upper limit. Following Dickey et. al. (2003) and Strasser et. al. (2007), we are separating the			
contribution of the warm phase, and finding the HI cool phase temperature. For this work, we are using existing archival			
HI data towards this region. Results from the work will be presented here.			

ASI2025_201	Khushbu K.	Contributed Talk
Stars, Interstellar Medium, and Astrochemistry in Milky Way		
S	Self-consistent modelling of the ionized and neutral gas in PN NGC	6445
Planetary nebulae (PN	e) are the expanding envelopes of ionized gas and dust ejected by	/ low-to-intermediate mass
stars (1-8 M☉) during t	heir final evolutionary stages. Beyond the ionized region where the	Lyman $lpha$ photons decline, a
transitional interface e	xists between the ionized and atomic regions. This interface has	photons of energy range 6 -
13.6 eV, which heat and dissociate the region by driving various chemical reactions known as photo-dissociation		
regions (PDRs). The ion	ization front is dynamic in PNe because the radius of the Strömgren	sphere is significantly larger
than the entire optical	size of the nebula. As a result, the radiations become trapped, $\boldsymbol{\mathfrak{g}}$	preventing the system from
reaching equilibrium.	This study focuses on PN NGC 6445, a typical H-rich central s	tar PN with thick PDR and
molecular signatures, v	which allow for a comprehensive model of both photo-ionized region	ons and PDRs using detailed
spectroscopic data. W	e have used the multiwavelength data ranging from UV to IR, enco	ompassing UV archival data
from IUE to account fo	r the photo-electric heating by the very small grains (VSGs), Optic	al spectroscopic data from
HCT-HFOSC spectrog	raph at two position angles (45 & 90 degrees anticlockwise), and I	R data from Spitzer IRS and
Herschel. To accurately constrain the central star parameters, we used the 1D Dusty photo-ionization model,		
integrating the CLOUDY 23.01 spectral synthesis code with the Rauch stellar model atmosphere. We optimized the		
ionized and neutral gas	by defining a density function and variation in the filling factor. Our	self-consistent model traps
the ionization front effectively at a particular snapshot. The model incorporates two-grain size distributions (MRN and		
KMH) to study the effe	cts of quantum heating by VSGs. Such a detailed analysis is cruc	ial for understanding stellar

evolution and the complex processes occurring within PNe.

ASI2025_198	Aayushi Verma	Contributed Talk
	Stars, Interstellar Medium, and Astrochemistry in Milky Way	
	Investigating the Star-forming Sites in the Outer Galactic Arm	

We aim to investigate the global star formation scenario in star-forming sites AFGL 5157, [FSR2007] 0807 (hereafter FSR0807), [HKS2019] E70 (hereafter E70), [KPS2012] MWSC 0620 (hereafter KPS0620), and IRAS 05331+3115 in the outer Galactic arm. The distribution of young stellar objects in these sites coincides with a higher extinction and H2 column density, which agrees with the notion that star formation occurs inside the dense molecular cloud cores. We have found two molecular structures at different velocities in this direction; one contains AFGL 5157 and FSR0807, and the other contains E70, [KPS2012] MWSC 0620, and IRAS 05331+3115. All these clusters in our target region are in different evolutionary stages and might form stars through different mechanisms. The E70 cluster seems to be the oldest in our sample; AFGL 5157 and FSR0807 formed later, and KPS0620 and IRAS 05331+3115 are the youngest sites. AFGL 5157 and FSR0807 are physically connected and have cold filamentary structures and dense hub regions. Additionally, the near-infrared photometric analysis shows signatures of massive star formation in these sites. KPS0620 also seems to have cold filamentary structures with the central hub but lacks signatures of massive stars. Our analysis suggests molecular gas flow and the hub filamentary star formation. Our study suggests that the selected area is a menagerie of star-forming sites where the formation of the stars happens through different processes.

ASI2025_264	Samrat Biswas	Contributed Talk	
	Stars, Interstellar Medium, and Astrochemistry in Milky Way		
Multi-wav	elength photo-polarimetric study of the intermediate age open clu	ster NGC 1912	
In this study we carrie	d out a comprehensive multi-wavelength investigation of the lov	v-galactic latitude open star	
cluster, NGC 1912, site	uated towards the anti-galactic center direction. The cluster has b	een characterized in context	
of its fundamental and	structural parameters, mass distribution, dust properties, and the	star formation dynamics. In	
order to achieve this go	pal, rigorous statistical techniques have been incorporated into po	larimetric, photometric, and	
astrometric data. Dynamical mass segregation study revealed a concentration of some apparently massive stars			
towards the cluster center. Polarimetric analysis in B,V, Rc, Ic wavelength bands showed that the Galactic magnetic			
field plays a dominant role in this region. Many stars in the region showed potential intrinsic polarization and/or rotation			
in position angle. Dust studies indicated that grain sizes within the intracluster region are comparatively smaller than			
that of the general ISM. Possibilities of differential extinction in the cluster region was detected. Interestingly, the Near-			
Infrared extinction map revealed the existence of a potential 'interstellar bubble' located close to the cluster region.			
Along the periphery of this bubble-like region, 16 young stellar objects (YSOs) were detected, suggesting that triggered			
secondary star formation events might have occurred in this region.			

ASI2025_454	Poojapriyatharsheni J	Contributed Talk	
	Stars, Interstellar Medium, and Astrochemistry in Milky Way		
	Diffuse Ionized Gas in the Cygnus X region and inner Galactic Pla	ane	
We present results fro	m a large-scale Radio Recombination Line (RRL) survey conducted	ed in the Cygnus X region, a	
prominent star formati	on area, and the inner Galactic Plane (–5° to 32° in l and $ b < 1^\circ$).	Observations were made at	
340 and 800 MHz with	n the Robert C. Byrd Green Bank Telescope, in a survey known a	as GDIGS-low (GBT Diffuse	
Ionized Gas Survey at I	ow frequency), with angular resolutions of 45' and 15', respective	ly. Data from a previous 5.8	
GHz RRL survey (GDI	GS; Anderson et al. 2021) was also included. All these surveys	s provide velocity coverage	
sufficient to detect hy	drogen, helium, and carbon lines. Cygnus X harbors young sta	ar clusters, massive stellar	
associations, and stell	ar nurseries, where new stars form. Our observations centered on	coordinates l = 80° and b =	
1.4°, spanning ±2.75°	in both galactic longitude and latitude. The intense radiation fror	n young stars in this region	
generates Diffuse Ioniz	ed Gas (DIG), confirmed by widespread low-frequency RRL detec	ctions. One objective was to	
detect helium RRLs from the DIG. By averaging spectra and masking HII region emissions, we achieved the sensitivity			
for the first helium line	for the first helium line detection from DIG at 800 MHz. The ratio of ionized helium to hydrogen was 0.7, with an		
interquartile range of 0.	interquartile range of 0.05 to 0.11, aligning with values seen in HII regions around O6 or earlier-type stars. The Galactic		
plane survey data further examines the relationship between hydrogen RRL emissions and far-infrared NII line			
emissions observed by the Herschel Space Observatory (Goldsmith et al., 2015; Pineda et al., 2019). Both NII and			
hydrogen RRL emissions originate from fully ionized gas, but our analysis shows that emission measures (EM) derived			
from NII lines account for only 5% or less of the EM from RRL data. Further study is needed to explain the low NII			
emissions from most RRL-emitting ionized gas.			

17th February 2025 Parallel Session – High Energy Phenomena, Fundamental Physics and Astronomy III [Chairperson: G. C. Anupama] [Time: 14:00 - 16:00]

ASI2025_147	Judhajeet Basu	Contributed Talk	
	High Energy Phenomena, Fundamental Physics and Astronomy		
"Shock"-ing resu	lts from M31: Detailed analysis of the slow classical nova AT2023	tkw (GIT20230919aa)	
Novae are cataclysmic	c thermonuclear runaway explosions on the surface of white dwa	arfs accreting matter from a	
secondary star. Observ	/able signatures include an increase in brightness up to several ord	ers of magnitude across the	
UVOIR spectrum follow	ved by a decline, characteristic of each nova. Recent studies have	demonstrated the power of	
shocks in driving novae	shocks in driving novae light curves. We present the slowly evolving classical nova in M31, AT 2023tkw, discovered		
and classified using optical facilities in India and the USA. The successive lightcurve peaks, occurring at increasing			
intervals, are likely due to a series of internal shocks generated near or within the photosphere. Through spectroscopic			
and photometric observations, we attribute the observed behavior to shock-induced heating events leading to the			
expansion and contraction of the photosphere, which led to multiple episodes of mass ejection (Basu et al.,			
submitted). Photoionization models revealed a high ejecta mass, consistent with a slow nova. Eruption observations,			
together with HST archival data, helped identify the secondary star and shed light on the white dwarf characteristics,			
accretion properties, and recurrence timescales of the M31 nova.			

ASI2025_414	Anjasha Gangopadhyay	Contributed Talk	
	High Energy Phenomena, Fundamental Physics and Astronomy		
A thour	ough investigation on the evolution of Helium rich interacting (Ibn)	supernovae	
Type Ibn supernovae (S	SNe), a rare subclass of core-collapse explosions, are characteri	zed by unique circumstellar	
interactions with heliur	m-rich material, producing distinct narrow emission lines. This w	ork presents the studies on	
two Ibn SN 2019uo; S	N 2019wep, and a compiled analysis of a sample of SNe Ibn ob	served by Zwicky Transient	
Factory (ZTF) from 20	18 - 2024. This provide valuable insights into the nature and di	versity within this SN type,	
revealing variations in	progenitor properties, mass-loss history, and CSM interaction. SI	N 2019uo and SN 2019wep	
highlight differences in	luminosity decline rates (typically around 0.1 mag/day for 30 days	s) and circumstellar medium	
(CSM) density, sugges	(CSM) density, suggesting distinct progenitor characteristics. The compiled sample from the ZTF broadens this		
perspective by comparing Type Ibn SNe with other interacting supernovae, emphasizing the role of CSM properties in			
shaping observable features and expanding our understanding of SN explosions in helium-rich environments. We			
typically infer that the lightcurves are mostly fast risers and decliners with some exceptions. The lightcurves are mostly			
driven by CSM interaction rather than radioactive decay. Spectroscopically, they show both emission and P-cygni He			
lines due to different CSM densities and structures. The line strengths hint towards Wolf-Rayet as typical progenitors.			
The unique CSM interactions and mass-loss rate estimates in Type Ibn SNe offer clues to episodic mass loss before			
explosion, enhancing our knowledge of core-collapse mechanisms. Continued observation of Type Ibn events is			
essential to further explore the progenitor diversity and mass-loss dynamics underlying these explosive phenomena.			

ASI2025 277	Shatakshi Chamoli	Contributed Talk
A312023_277	Shatakshi Ghamoti	Contributed Talk
	High Energy Phenomena, Fundamental Physics and Astronomy	ý
	Multiwavelength study of novae in M31	

Novae are a class of cataclysmic variables with an accreting White Dwarf (WD) primary and mass-transferring secondary star. These systems go into outburst as a consequence of thermonuclear runaway on the surface of the WD, leading to an increase in brightness. Novae with only one recorded outburst are called classical novae (CNe), while those with repeated outbursts are known as recurrent novae (RNe). Observations of novae in the Milky Way are biased due to our location and dust obscuration towards the centre. Hence we look to our neighbouring galaxies to study novae in different galactic components, such as spiral arms, bulge and halo. M31 is visible for most part of the year, suffers low extinction and has a higher nova rate than the Milky Way making it an excellent site for novae population studies. We present a multiwavelength study of novae in M31 using survey data from GROWTH-India Telescope (GIT) in the g' and r' filters and the AstroSat-UltraViolet Imaging Telescope (UVIT) in the F148W filter. Out of the 92 transients reported in the M31 field between July 2022 and December 2023, we detected 55 in the optical bands, and six close to outburst and 29 during quiescence in the UV. We analysed the multiwavelength light curves of these objects and filtered nova candidates based on their optical light curve morphology and increase in UV flux. We further categorised nova candidates into speed classes wherever possible and identified potential RNe based on the Maximum Magnitude vs Rate of Decline (MMRD) relation. We also report the 2024 outburst of the M31 RN with a recurrence period of 2.5 years, the second shortest known recurrence.

ASI2025_419	Devanand P U	Contributed Talk	
	High Energy Phenomena, Fundamental Physics and Astronomy		
X-Ray Sp	ectral Variability of Thirteen TeV High Energy Peaked Blazars with	XMM-Newton	
We present a compret	nensive study of the X-ray spectral variability observed in 13 TeV	photon emitting high energy	
peaked BL Lacs (HBL	s): 1ES 0229+200, 1ES 0347-121, 1ES 0414+009, PKS 0548	-322, 1ES 1028+511, 1ES	
0647+250, 1ES 1101-2	232, 1H 1219+301, H 1426+428, Mrk 501, 1ES 1959+650, PKS 20	05-489, and 1ES 2344+514.	
These data come from	54 XMM-Newton EPIC-PN pointed observations made during its o	operational period from June	
2001 through July 2023	3. We performed spectral studies in the energy range 0.610 keV k	by fitting X-ray spectra of the	
pointed observations v	vith power law (PL) and log parabolic (LP) models. We found at 99	9\$\%\$ confidence level that	
31 of these X-ray spec	tra were best fitted with a range of LP models with local photon in	dices (at 1.0 keV), $\alpha \simeq 1.75 $	
2.66, and convex curva	ature parameter $\beta\simeq$ 0.02–0.25. PL models with photon index $\Gamma\simeq$	1.78–2.6 best described the	
spectra of fourteen-po	inted observations. Nine PN spectra showed resulted in negative c	curvature parameter in fitting	
a LP model, and eight	a LP model, and eight among them were significant (β≥2×βerr). We fitted broken power law (BPL) models to these		
eight X-ray spectra and	eight X-ray spectra and found spectral hardening in the range of $\Delta\Gamma\simeq 0.06$ –0.54 for these observations. EPIC-MOS		
spectra were also studied for those eight observations to search for similar trends and we were able to find them in			
only two, one observation each of PKS 0548-322 and Mrk 501. This indicates the possibility of the co-existence of an			
inverse Compton component along with the dominant synchrotron component for these two observations. We also			
performed correlation studies between various log-parabolic spectral parameters and briefly discuss their possible			
implications.			

ASI2025_436	Athira M Bharathan	Contributed Talk
	High Energy Phenomena, Fundamental Physics and Astronom	У
Probing H	igh-Energy Emission Mechanisms in Blazars through X-ray Polariza	ation with IXPE
The spectral energy dis	stribution (SED) of blazars typically exhibits a characteristic double	-peak structure, with a low-
energy peak from sync	chrotron radiation emitted by relativistic particles within the jet a	nd a high-energy peak from
inverse Compton scatt	ering. In BL Lacertae (BLL) objects, the X-ray emission generally lie	es within the high-energy tail
of the synchrotron cor	nponent, whereas in Flat Spectrum Radio Quasars (FSRQs), it is	s situated in the low-energy
segment of the inverse Compton component. These contrasting locations allow X-ray polarization measurements to		
provide insights into particle acceleration processes within the jets of these blazar types. In this study, we analyze		
observations of several blazars by NASA's Imaging X-ray Polarimetry Explorer (IXPE), detecting significant polarization		
in Mrk 421, 1ES 1959+650, and PKS 2155-304, while no X-ray polarization was detected for 3C 454.3. Through		
polarization analysis, we explore the structure and properties of the high-energy emission regions and examine the		
differing polarization behaviors between FSRQ and BLL sources, shedding light on distinctions between leptonic and		
hadronic models of blazar emission.		

ASI2025_247	Susmita Das	Contributed Talk	
	High Energy Phenomena, Fundamental Physics and Astronomy		
	X-Ray Spectral Evolution and Fourier Time Lags in Two HSP Blaz	ars	
We study X-ray (0.7-20) keV) spectra and light curves of two high synchrotron peaked (HS	P) blazars, Mrk 421 and 1ES	
1959+650, using simu	ltaneous observations by the SXT and LAXPC instruments onboa	rd AstroSat during 2016-19.	
We carry out time-reso	olved spectroscopy to study hours-timescale spectral variation, a	nd find correlation between	
the variability of the be	st-fit spectral parameters. Cross-correlation analysis shows the h	ard and soft X-ray variability	
are strongly correlated	with positive, negative or zero time lag at different epochs. We construct the set of t	ompute the cross-spectrum	
between the light curve	es in order to study the variation of the time lag as a function of Four	rier frequency. We find hard-	
to-soft or soft-to-hard	transitions in time lags with increasing Fourier frequency. For HSP	blazars, the X-ray emission	
is dominated by synch	rotron radiation by the highest energy electrons, and the energy of	dependent acceleration and	
cooling timescale may explain the time lags. We compare our results with a theoretical time dependent multi-zone			
model of non-thermal	model of non-thermal emission from blazars. We find that high-energy particles, having a simple power-law energy		
distribution injected by a shock front moving down the emission region, emitting synchrotron and inverse-Compton			
radiation in the presence of a turbulent magnetic field can give rise to the above spectral and temporal variability			
properties. However, partial mismatch in certain spectral properties suggest additional features in the energy			
distribution of injected particles or emission mechanisms.			

ASI2025_364	Priyesh Kumar Tripathi	Contributed Talk
	High Energy Phenomena, Fundamental Physics and Astronom	У
	Isolated black holes accreting through dense environments	
We investigate accretion	onto an isolated black hole under two wind configurations: (a) uniform wi	nds directed towards the black
hole and (b) winds strear	ning past the black hole. This study employs a non-relativistic 2D simulat	tion code that incorporates the
relativistically correct equation of state. A continuous parallel wind having different compositions, such as electron-proton flow		
or a charge-neutral mixture of electron, positron, and proton, was injected into the simulation domain through an inflow boundary.		
We found that no disc-like structures form within the accretion flow when uniform winds are directed toward the black hole.		
However, in the case of winds streaming past the black hole, the flow initially encircles the accretor, creating a disc-like structure.		
This disc later transforms into a shock cone due to the inflow pressure but reappears at a later time depending on the angular		
momentum distribution in different cases. These alternating phases of disc-like structure and shock cone significantly affect the		
bolometric luminosity of the system, causing variation by an order of magnitude.		

ASI2025_463	Pragyan Pratim Bordoloi	Contributed Talk	
	High Energy Phenomena, Fundamental Physics and Astronom	У	
Identification and mo	odelling of optically thin inverse Compton scattering in the prompt	emission of GRB131014A	
The mechanism respo	onsible for the prompt gamma-ray emission of a gamma-ray bu	rst continues to remain an	
enigma. The detailed a	nalysis of the spectrum of GRB 131014A observed by the Fermi ga	amma ray burst monitor and	
Large Area Telescope h	nas revealed an unconventional spectral shape that significantly de	viates from the typical Band	
function. The spectrum	n exhibits three distinctive breaks and an extended power law at hi	gher energies. Furthermore,	
the lower end of the sp	the lower end of the spectrum aligns with power-law indices greater than -0.5, and in the brightest region of the burst,		
these values approach	these values approach +1. The lowest spectral break is thereby found to be consistent with a blackbody. These		
observed spectral characteristics strongly suggest the radiation process to be inverse Compton scattering in an			
optically thin region. Applying the empirical fit parameters for physical modeling, we find that the kinetic energy of the			
GRB jet of bulk Lorentz factor, $\Gamma\sim$ 400, gets dissipated just above the photosphere, approximately at a radius of \sim			
1014 cm. The electrons involved in this process are accelerated to a power-law index of δ = –1.5, and the minimum			
electron Lorentz factor, ymin, is approximately 3. In summary, this study provides a comprehensive identification and			
detailed modeling of optically thin inverse Compton scattering in the prompt emission of GRB 131014A.			

17th February 2025 Parallel Session – Galaxies and Cosmology III [Chairperson: Abhirup Datta] [Time: 14:00 - 16:00]

ASI2025_250	Rakshit Chauhan	Contributed Talk	
	Galaxies and Cosmology		
	Effect of interaction on the star forming properties of dwarf galax	kies	
One of the key drivers of	of galaxy evolution is interaction between galaxies and these intera	ctions are expected to occur	
among galaxies of all m	nass range. Although dwarf galaxies constitute the most dominant p	oopulation of galaxies across	
all redshifts, and major	rity of mergers are expected among them, studies exploring the eff	ects of interactions in these	
systems are rare com	pared to that of massive galaxies. In this context, we have condu	cted a FUV study for a large	
sample of 6176 dwarf	sample of 6176 dwarf galaxies (195 interacting and 5981 non-interacting isolated galaxies within the stellar mass		
range of 10^7–10^10	range of 10^7–10^10M⊙ and redshift range of 0.00 – 0.12) using GALEX archival data in order to understand the		
impact of dwarf-dwarf interactions on their star formation. We find clear evidence for enhanced star formation rate in			
interacting dwarfs with respect to their non-interacting counterparts when compared across different stellar mass			
and redshift bins. Further, in order to understand the effect of interactions on the spatial distribution and properties of			
star-forming clumps in interacting dwarfs, we performed a FUV study of 26 dwarfs (19 interacting and 7 non-			
interacting) undergoing different stages of interactions in stellar mass range of 10^6 – 10^8MO, in the Lynx Cancer			
Maial mainer lairda an na a d	lution LN/IT also an actions (

Void, using higher resolution UVIT observations (~ 3 times better spatial resolution than GALEX). Enhancement in star formation rate and star formation rate density for the clumps in the interacting dwarfs compared to the non-interacting galaxies was observed. We also find clear indications of star formation in tidal tails/bridges between interacting galaxies. In this talk, I will present the results from these studies and discuss future prospects using multi-wavelength studies to understand the overall evolution of low-mass galaxies.

ASI2025_71	Chandan Watts	Contributed Talk
	Galaxies and Cosmology	

A Tale of NGC 3785: The formation of an ultra-diffuse galaxy at the end of the longest tidal tail

We present the discovery of an extended and faint tail associated with the galaxy NGC 3785 in an isolated environment. When galaxies interact, they produce tidal features based on the nature of the interaction and the fraction of gas involved. During this process, gas and stars are extracted in the form of tidal tails and streams (Watts et al. 2024). Studies indicate that these tidal tails are blue, and most of the gas accumulates near the tip of the long tails, which results in the formation of tidal dwarf galaxies during gas-rich mergers (Duc et al. 2004). In this work, we studied the nearby galaxy NGC 3785, which possesses lenticular (S0) morphology, and we observed a long extended tail associated with it. This tail is visible in the Dark Energy Camera Legacy Survey (DECaLS), Sloan Digital Sky Survey (SDSS), and Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) images. However, it is most clearly seen in the DECaLS observations due to their higher sensitivity. We created a detection map using the optical g-band and used the boundaries of this map to measure the length of the tail through the cubic spline fitting method. The projected length of the tail is ~390 kpc, making it the most extended tail observed in an isolated environment so far. This study also provides observational evidence supporting the formation of ultra-diffuse galaxies (UDGs) at the end of the tail. We proposed two possible scenarios for the formation of the tail and one of the scenarios indicates that this tail resulted from the interaction of the NGC 3785 with a gas-rich galaxy, which leads to the formation of a UDG at the terminus of the tail.

ASI2025_340	Saili Keshri	Contributed Talk
	Galaxies and Cosmology	

Kinematic Misalignments and Remnant Features in Early-Type Galaxies: Insights from SDSS-MaNGA Data We present an analysis of 53 early-type galaxies (ETGs) using SDSS-MaNGA IFU data to investigate their stellar and gas kinematics, focusing on kinematic misalignments as indicators of merger activity. We examine the occurrence of these kinematic features across diverse environments and their position on the specific star formation rate (sSFR)– stellar mass plane. Most ETGs are found in intermediate-density environments, with smaller fractions in high- and low-density environments, suggesting a unique presence of ETGs in intermediate densities given ETGs' typical association with high-density environments. Kinematic analysis reveals that most ETGs show significant stellar-gas misalignment with higher misalignment rates in intermediate-density environments, likely due to favorable conditions for gas accretion. ETGs are distributed across the sSFR–mass plane, with the majority being quenched, while comparable fractions occupy the star-forming and green valley regions. Misaligned ETGs predominantly populate the quenched region, though some star-forming cases suggest recent merger events. Additionally, most ETGs in our sample display shell structures, and the majority of shell galaxies are kinematically misaligned. These shells, alongside other remnant features, are primarily found in intermediate-density environments, underscoring the significant role of both intermediate- and high-density environments in shaping ETG evolutionary pathways.

ASI2025_47	Mukesh Singh Bisht	Contributed Talk	
//012020_1/	Galaxies and Cosmology		
	Origin of hot gas in the Circumgalactic Medium of the Milky Wa	N/	
T I I I			
	hot gas, referred to as `super-virial' gas (\$\sim 10^7\$ K), in the Cir	- , ,	
of the Milky Way has ra	aised intriguing questions about its origin, geometry, and spatial dis	stribution. This gas has been	
observed both in X-ray	emission and absorption; in emission, it appears alongside $`\ensuremath{virial}$	' gas (\$\sim 10^6\$ K), while	
in absorption, it has be	een identified through the detection of highly ionized species like	SiXIV, NeX, and OVIII in the	
spectra of Quasars. No	<code>stably</code> , the <code>`emitting'</code> super-virial gas and the <code>`absorbing'</code> super-vir	ial gas have different origins.	
To demystify the origin	n and characteristics of hot gas, we have developed models for I	both emitting and absorbing	
super-virial gas. For th	e emitting gas, we adopt a `puffed-up disk' geometry based on t	he observed anticorrelation	
between Emission Mea	between Emission Measure (EM) and sin(b), where b is the Galactic latitude with a typical scale height of \$1\$ kpc and		
scale radius of \$5\$ kpc	e. This disk-like model explains the observed correlation between t	he EM of the super-virial and	
virial gas. We have als	so conducted hydrodynamical simulations of supernova (SNe)-d	riven disk-wide outflows to	
connect the origin of th	is gas to the outflows from SNe in the Milky Way's disk. For the ab	osorbing super-virial gas, we	
propose that it origina	tes from shocked ejecta in supernova remnants (SNRs) located	d in the extra-planar region	
surrounding the Milky	Nay's disk. The reverse shock in the supernova can heat the \$\alp	ha\$-enriched ejecta to very	
high temperatures (\$\	high temperatures (\$\sim 10^7\$ K). This model effectively accounts for the high column densities of H-like ions		
observed in absorption when the line of sight intersects such SNRs in the halo. Additionally, the supernova model			
explains the non-solar composition of the observed super-virial gas, as the shocked ejecta is \(\alpha\)-enriched and			
likely has super-solar o	characteristics.		

ASI2025_305	Shashank Gairola	Contributed Talk
	Galaxies and Cosmology	

Tracing Hierarchical Star Formation out to Kiloparsec Scales in Nearby Galaxies

Star formation is a hierarchical process, as revealed by the observations of its several gaseous and stellar tracers. Supersonic turbulent motions in molecular clouds produce scale-free, hierarchical density structures which undergo gravitational collapse during star formation and result in a hierarchical distribution of stellar matter in galaxies. To explore this hierarchy, we use the FUV and NUV observations of 4 nearby spiral galaxies from the Ultra-Violet Imaging Telescope (UVIT). By employing two-point correlation statistics, we find that the young star forming clumps (SFCs) in galaxies are arranged in a fractal-like, hierarchical distribution. However, this hierarchy is only observable till a maximum scale of order ~1 kpc and does not extend to the entire galaxy size. Hierarchical star formation can be sustained up to this scale by ISM turbulence originating from sources such as gravitational instabilities, cloud collisions and stellar feedback. The hierarchical distribution of SFCs randomizes over 10-50 Myr which is caused by the SFCs migrating away from their birthplaces with increasing age. We find that unlike the often-quoted, universal hierarchical properties of molecular gas, the resulting hierarchy of star formation is not universal rather, it depends on the host galaxy properties such as the nature of spiral arms, stellar mass and galactic shear. Turning our investigation towards gaseous tracers of star formation, we also analysed HII region distribution in a sample of 19 neighbouring galaxies and observed that HII regions show only mild signatures of being part of a hierarchy. Hereby, we are observing stark differences in the spatial distribution of stellar and gaseous tracers of star formation in galaxies. Through these projects which I will elucidate in my talk, we are actively investigating the role of gravity, turbulence and galaxy environment on the hierarchical star formation process in order to better understand the baryon cycle in galaxies.

ASI2025_10	TANYA TRIPTY	Contributed Talk	
	Galaxies and Cosmology		
AN	UNBIASED MHI and MStar SCALING RELATION IN THE LOCAL UN	IIVERSE.	
The various processe	s and evolutionary phases experienced by galaxies show emi	ssions spanning the entire	
electromagnetic spect	rum. Consequently, a comprehensive understanding of these ph	enomena requires a multi-	
wavelength approach	. In this work, I used the 100% ALFALFA catalog in co	njunction with its optical	
counterparts(Durbala	et al. 2020). Optical counterparts have been matched in SDSS, GAI	EX and WISE. These can be	
used in conjugation to g	give better estimates for the stellar mass. We have Stellar Mass Esti	mates derived with Kcorrect	
based on optical ugriz	bands, and GSWLC-2 mass estimates(Salim et al. 2016) which	n utilize all three surveys in	
optical, UV, and infrare	ed bands.GSWLC provides more accurate stellar mass estimates	s because of two additional	
bands. We use non-pa	arametric method to constrain the stellar mass function of gas-ri	ch galaxies in the ALFALFA	
100% sample for both	stellar mass estimates and compare their results. The data is co	nsistent with the Schechter	
function with the best	t-fit parameters Mstar , $\varphi star$ /103 and $\alpha (=\!10.85,\!2.84,\!-1.22).$ A	dditionally, we look at the	
contribution to the	total stellar mass function of these galaxies from the r	ed(=10.82,2.19,-1.03) and	
blue(=10.73,1.39,-1.32	2) population of galaxies. Compared to the overall population, the i	red population is 60% of the	
total stellar mass while	e blue pop- ulation contributes rest. The gas-rich population of gala	axies consists of 15% of the	
total stellar mass. In th	total stellar mass. In this process, we have developed a method to predict the stellar mass function and can extend it		
to other optical properties. We have then used Stellar Mass Function to determine the underlying scaling relation			
between MHI and Mstar across different galaxy populations, including complete samples, as well as blue and red			
galaxies. This approach helps us understand how the relationship between cold gas and stellar mass changes across			
different types of galaxies in an unbiased manner.			

ASI2025_317	Atharva Mirashi	Contributed Talk	
	Galaxies and Cosmology		
	HI Observations of Dark Matter Deficient Dwarfs Galaxies		
Recent discoveries of	Dark Matter-Deficient galaxies in the local universe challenge the	ne current understanding of	
galaxy formation and e	evolution models. Guo et al. (2020) identified 14 such galaxies u	sing the SDSS and Arecibo	
ALFALFA survey data.	They used single-dish HI spectra and optical inclination to estim	ate the velocity widths and	
dynamical masses of t	hese galaxies. However, the single-dish observations often can g	et contaminated for several	
reasons, and the optical inclinations might not be consistent with the inclination of the HI disk. We conducted			
interferometric observ	interferometric observations of six galaxies from their sample with the uGMRT to resolve this issue. With our		
observations, we have	been able to produce the rotation curve of these galaxies. Our prel	iminary result indicates that	
some of these galaxies	some of these galaxies indeed show a deficiency in dark matter. For example, the ratio of dark matter to baryonic		
matter in UGC6438 is found to be about 3.6, which is considerably lower than what is seen in other dwarf galaxies (~			
10 or more). In this pre	esentation, I will describe the results for all our sample galaxies a	nd discuss how they pose a	
challenge to the curren	t understanding of galaxy formation and evolution in the context of	the Lambda-CDM model.	

ASI2025_702	Yogesh Chandola	Contributed Talk	
Galaxies and Cosmology			
	Neutral atomic hydrogen in nearby compact starburst galaxies	S	
Compact starburst ga	axies such as Blue Compact Dwarf galaxies (BCDs), Green Pea	s and Blueberry galaxies at	
nearby redshifts act a	s local laboratories to understand star formation in the early pr	imordial Universe. Studying	
atomic HI gas content	and gas depletion time scales can provide insights into the evolution	utionary processes of these	
galaxies. In this talk, I v	vill present our recent work on, actively star-forming, blue compac	t dwarf galaxies (BCDs) and	
blueberry galaxies from	1 21 cm observations with the Arecibo Observatory, Giant Metrewa	ave Radio Telescope (GMRT)	
and Five hundred met	re Aperture Spherical radio Telescope (FAST). Of the 11 BCDs	observed with the Arecibo	
telescope, HI emission	was detected in six sources. For comparison, we used the HI data e	of additional dwarf irregulars	
(dls) and BCDs in the l	iterature. BCDs observed with the Arecibo have HI mass-stellar r	mass relation similar to that	
from earlier observation	ns which implies that HI gas dominates the baryons at lower stel	lar masses. BCDs observed	
with the Arecibo Obse	rvatory have significantly lower median HI depletion timescales	of \sim 0.3 Gyr than depletion	
scales of other dls/BCI	Ds in literature. I will also present the results from follow-up deep H $\!$	H observations of two BCDs	
with GMRT where we f	ind that star formation takes place in high HI gas density regions.	After that, I will present the	
results of our recent H	results of our recent HI study of 28 blueberry galaxies with FAST. We have detection towards only two sources and a		
low median depletion timescale upper limit of ~0.5 Gyr from non-detections. We find blueberry galaxies tend to have			
a lower gas fraction (HI-to-stellar mass ratio) than expected from gas fraction-stellar mass relation for main-sequence			
galaxies. I will conclude with the prospects for HI studies with the Square Kilometer Array (SKA) pathfinders such as			
GMRT, FAST, MeerKAT and SKA in future.			

17th February 2025 Parallel Session – Facilities, Technologies and Data science III [Chairperson: Blesson Mathew] [Time: 14:00 - 16:00]

ASI2025_764	Vikram Rana	Invited Talk	
	Facilities, Technologies and Data science		
X-Ray /	Astronomy: a Unique Observational Window to Study Astronomica	al Sources (I)	
X-rays are the signatu	res of the high-energy Universe. The X-ray photons being produ	iced in extreme conditions,	
provide unique opportu	provide unique opportunity to probe regions close to the Black Holes, Neutron stars and White Dwarfs. Hence making		
it possible to study su	it possible to study such exotic objects in the Universe, thereby allowing the exploration of physical processes in		
extreme conditions. Many X-ray missions and instruments were realised since 1960s that contributed to the present			
understanding of the physics of X-ray emission in various astronomical sources. A steady progress in technological			
development has put X-ray astronomy in the mainstay of astronomy and astrophysics.			
In this talk, I will provide an overview of the observational X-ray astronomy as well as current and future X-ray missions			
that have provided some path breaking scientific results to shed new lights on the nature of various astronomical			
sources as well as the physical mechanisms by which the X-rays are emitted. I will briefly mention about India's only			

X-ray polarimetry instrument POLIX onboard XpoSat satellite.

ASI2025_257	Tarun Bangia	Contributed Talk	
	Facilities, Technologies and Data science		
Develo	pment and Prototype Testing of a Monitoring System for 3.6m DO	۲ Equipment	
The development of a	n effective monitoring system for equipment supporting telesco	pe operations is crucial for	
ensuring reliable opera	tion and preventing equipment malfunctions. The present work pre	esents the development and	
prototype testing of a	monitoring system designed for equipment of 3.6m Devasthal O	otical Telescope (DOT). The	
system is tailored to the	ack two key performance indicators viz. thermal stability and vib	oration levels of mechanical	
equipment supporting	telescope operations. The system incorporates sensors, data ac	quisition and diagnostics to	
monitor equipment he	alth, enabling early fault detection and predictive maintenance. Th	ne system can be monitored	
in real-time remotely t	in real-time remotely to streamline operations. Prototype testing of a part of the system was conducted for a few		
equipment to assess the system's performance under operational and environmental conditions. Raspberry Pi,			
DS18B20 temperature sensors and wireless vibration sensors, etc. were employed for taking sample data. Key testing			
objectives included the collection of data and data processing to track the abnormal conditions. Temperature metrics			
and vibration spectrum	ns were obtained for equipment. A shock pulse signal was also us	ed to determine the bearing	
condition and faults v	vithin the rotating machinery. The analysis will be useful in the	detection of early signs of	
mechanical issues inv	olving misalignment and bearing faults etc. The prototype tests	demonstrate the system's	
capacity to detect and	capacity to detect and diagnose potential issues in components of equipment before they lead to failures, enhancing		
equipment longevity and supporting optimal functionality. Early warning signals will be useful in initiating proactive			
maintenance activities. The findings contribute valuable insights into the development of monitoring solutions for			
equipment supporting telescope operations.			

ASI2025_714	Kuntal Misra	Contributed Talk	
	Facilities, Technologies and Data science		
	Initial results from the 4-m International Liquid Mirror Telescope (I	LMT)	
The 4m International I	iquid Mirror Telescope (ILMT) is the first optical survey telesco	pe in Devasthal, India. The	
telescope achieved its	telescope achieved its first light on 29 April 2022. The primary mirror is made of liquid mercury, continuously spinning		
to achieve a paraboloid	to achieve a paraboloid shape. It constantly scans a 22 arcmin wide strip of the zenithal sky and records the images in		
three broadband filters (g', r' and i') using a 4k X 4k CCD camera in Time Delay Integration (TDI) mode. In about 10-12			
hours of observations during a single night, approximately 15 GB of data volume is generated. To process this data,			
different automated pipelines are developed to perform the astrometric and photometric calibration, image			
subtraction to detect new transients and machine learning based tools to classify these transients. In this talk, I will			
give a brief overview of the ILMT and its science drivers, the initial results and the availability of data to the users.			

ASI2025_640	Kiran Jayasurya	Contributed Talk	
	Facilities, Technologies and Data science		
G	EM-TPC Soft X-ray Polarimeter: Demonstration of Polarimetric Ca	pability	
The Soft X-ray Polarin	neter (SXP) is a Gas Electron Multiplier (GEM) based Time Proj	ection Chamber (TPC) type	
polarimeter being deve	loped in the 2-10 keV energy band by the Space Astronomy Group	, U R Rao Satellite Centre. X-	
ray photons enter the g	as chamber between a cathode and a standard GEM in the direct	ion parallel to an anode strip	
readout below the GEI	M. The photons undergo photoelectric absorption in the gas volur	me and produce an electron	
charge cloud which drifts towards the GEM under the influence of an electric field. The charge cloud gets amplified via			
avalanche multiplication across a GEM and a signal is induced at the anode strip readout. The time of drift and the strip			
number at the readout gives the projection of the electron track in the azimuthal plane with respect to the incident			
photon beam. The trac	photon beam. The tracks are then reconstructed to get the initial photoelectron emission directions and thereby, the		
phase angle of polarization. A distribution of the phase angles can be fit with a cosine function to get the modulation			
curve and thereby the polarization properties of the beam. Here, we present the results from the lab model of SXP and			
the modulation obtained for polarized X-ray input at 4.0 and 6.15 keV energies. Further progress is being made to			
optimize the operating parameters and maximize the modulation factor within the energy band of interest.			

ASI2025_503	Prasad Neelam	Contributed Talk	
	Facilities, Technologies and Data science		
	The 2.5M Telescope and backend instruments suite		
Commissioned at Gu	ru Shikhar in October 2022, the 2.5m telescope at Mount Ab	ı is one of India's notable	
developments in astro	nomy. This modern facility is one of the most developed observato	ries in the country, featuring	
high-tech equipment fo	or high-end observation and data acquisition. The initial 'first light'	instrument set includes the	
PARAS-2, an in-house	developed, high-resolution, fiber-fed spectrograph. PARAS-2 pla	ays a vital role in exoplanet	
detection and other h	detection and other high-resolution spectroscopic studies, showcasing the expertise of Indian engineers and		
scientists in cutting-edge instrument design. In addition to PARAS-2, the telescope is equipped with a Speckle Imager,			
essential for high-cont	rast imaging, and a 4k CCD Imager (Faint Object Camera-FOC) for	imaging studies. From 2023	
to 2024, two instrume	to 2024, two instruments developed in the institute were also installed on the telescope: The Low-Resolution		
Spectrograph (LRS) ar	Spectrograph (LRS) and Proto-pol. The LRS allows a wide range of low-resolution spectra studies, essential in		
observing fainter objects or features with a more comprehensive spectral range. Proto-pol, in turn, adds to performing			
polarization studies and low-resolution spectroscopy by the instrument. In my talk, I will provide a brief yet			
comprehensive overview of the 2.5m telescope and its suite of back-end instruments. Each instrument is pivotal in			
expanding our understa	expanding our understanding of the cosmos.		

ASI2025_388	Kalpesh Chillal	Contributed Talk
	Facilities, Technologies and Data science	
	Challenges in Ungradation and Testing of IEOSC CCD Controlle	r

Challenges in Upgradation and Testing of IFOSC CCD Controller

The IGO telescope, equipped with the IFOSC (IUCAA Faint Object Spectrograph & Camera) instrument, is a back-end instrument for astronomical observations at optical wavelengths. The IFOSC supports imaging, spectroscopy, and polarization studies, and it includes additional systems such as a calibration unit, CCD Dewar and camera, a Common Control Unit (CCU), and control software. This paper examines how these components are designed and how they improve the telescope's ability to observe. Integrating these systems provides a comprehensive view of advanced instrument design for astronomical purposes. Key challenges in testing these systems and the methods used to ensure reliable calibration and accurate data capture are addressed. A discussion on the current specifications of the CCD controller, which uses analog CDS (Correlated Double Sampling) technology and receives astronomical data through fiber optic connectors, highlights hardware issues. These issues, particularly data transmission and performance consistency, present significant difficulties, necessitating careful troubleshooting and innovative solutions. As technological advances continue, the need for instrument upgrades becomes essential. This paper highlights the contributions of IDSAC (IUCAA Digital Sampler Array Controller) hardware and software, which are crucial in enhancing instrument performance and data accuracy. The new controller features increased clock speeds, three gain settings, and Ethernet-based data transmission, improving image quality and observational efficiency. This study provides valuable insights into the design, testing, and optimization of advanced astronomical instruments, establishing a framework for future enhancements in telescope instrumentation.

ASI2025_670	Rahul Gopalakrishnan	Contributed Talk	
	Facilities, Technologies and Data science		
	Data processing pipeline of SUIT onboard Aditya-L1		
The Solar Ultraviolet Imaging Telescope (SUIT) onboard Aditya-L1 observes the Sun from Lagrange point 1. It generates about 100			
Gb of data per day in the default observation mode, capturing Region of Interest (ROI) and full-disk images as per the planned			
observations. In this presentation, we explain the data flow through the pipeline and the corrections applied to the images during			
processing. SUIT produces two levels of data products: Level 1, which will be made available within 24 hours of data reception,			
and Level 2, which will be made available within one week. Outreach images and daily movies are also regularly produced and will			
be available to the public. We elaborate on the processing steps involved in producing these outputs.			

ASI2025_528	Manish Chauhan	Contributed Talk	
	Facilities, Technologies and Data science		
Long	g-term analysis of meteorological parameters over Indian astronon	nical sites	
The Earth's atmosphere	adversely affects most ground-based astronomical observations. Observations	ervations in the visible and the	
Infrared are affected by o	cloud cover and atmospheric turbulence which can lead to a degradation	n in the atmospheric seeing. In	
addition, ground based of	observations are severely impacted or influenced by atmospheric wat	er vapour. Atmospheric water	
vapour is of particular in	nportance in the sub-millimeter regime where even slight increase in	water vapour can significantly	
decrease the atmospheri	c transmittance. This is of particular relevance for SAC-ISRO's proposed s	submm/THz telescope at a high	
altitude site, Hanle, Ladakh. In this study, we analyse and discuss the long-term trends (1975 - 2023) and statistical analysis of			
these meteorological parameters using the ERA5 reanalysis dataset over 10 Indian astronomical observations sites. These sites			
cover diverse atmospher	ic and climatic conditions with varying background conditions. These tre	ends are studied over different	
timescales (months and	seasons). Over the historical period, we observe an increase in colur	nnar water vapour and 2m air	
temperature over various	observational sites in certain time periods. We also discuss the trends	observed in cloud cover, 10 m	
wind speed and total columnar ozone. Additionally, we will present climate projections from the future climate scenarios over			
these sites. Studying these long-term trends and climate projections are of particular importance for site characterization of			
upcoming Indian astrono	mical observatories.		

ASI2025_559	Thubstan Rinchen	Contributed Talk
	Facilities, Technologies and Data science	

Design & Development of mechanism for Mirror Panel Maintenance for MACE Telescope

MACE (Major Atmospheric Cherenkov Experiment), an imaging atmospheric Cherenkov telescope is operational at Hanle in Ladakh to explore the very high energy gamma ray universe. The telescope is equipped with a large, 21 m diameter quasi-parabolic optical reflector. The tessellated light collector comprises of 356 mirror panels of each 0.984m X 0.984m supported on basket frame structure on three ball joint pivots. Each mirror panel consists of 4 mirror facets of size 0.488m × 0.488m, grouped to obtain a single reflecting surface. Maintenance of the mirror panels is necessary due to the gradual misalignment of mirror facets, reduced reflectivity, and issues with mechanical connections. The primary challenge in maintaining these mirror panels arises from the substantial size of the light collector, a limited position of telescope under which we can conduct the maintenance and constrained space available for maintenance due to high fill factor of light collecting surface. To address this, a mechanism has been developed for replacement of mirror panels on the basket frame. This mechanism encompasses a device for securely holding the mirrors, a mechanism for projecting them, and a device for collecting the mirrors. It allows for the extension of mirror panels beyond the reflective surface by 240 mm, accomplished through a lead screw system affixed to the basket in place of the existing pivot clamps. This projection of the mirror panels greatly simplifies the process of disassembly and reassembly. The collection of mirrors onto an aerial access platform is facilitated by a mirror holder frame attached to basket of Ariel access platform and a vibration isolator to avoid the transfer of gravity movement of Ariel access platform to the telescope basket. The mechanical design and the outcomes of the testing for this mechanism will be presented during the meeting.

18th February 2025 Plenary Session III [Chairperson: Jessy Jose] [Time: 09:15 - 11:15]

ASI2025_765	S. P. Rajaguru	Invited	
Plenary			
Solar Interior Dynamics and Helioseismology			
Continuous helioseismic observations over the last three decades, from space (SOHO/MDI and SDO/HMI) as well as			
from ground (GONG), have enabled studies of variations in large scale flows in the solar interior, especially that in			
rotation (zonal) and meridional flows. These measurements are crucial to constrain dynamo models and hence to			
understand the origin and maintenance of solar magnetism. We summarise recent progress in such helioseismic			
studies of solar interior, focussing on the dynamics of near-surface shear layer (NSSL) as well as the tachocline, and			
their connections to magnetic fields and the solar cycle.			

ASI2025_785	Manoj Puravankara	Invited
	Plenary	

Star and Planet Formation Studies in the New Millennium: Key Insights from Infrared Space Missions

The past two decades have been transformative for our understanding of star and planet formation, driven by the unprecedented capabilities of infrared space observatories. This talk highlights key insights from the Spitzer Space Telescope, the Herschel Space Observatory, and the James Webb Space Telescope (JWST), which together have reshaped our view of how stars and planets form in the cosmos.

Spitzer provided the first comprehensive mid-infrared census of protostars, enabling detailed characterization of protostellar evolution and addressing the long-standing "protostellar luminosity problem." Its groundbreaking discovery of transitional disks, along with detailed studies of the disk chemical composition, structure, and evolution, established a foundation for understanding planet formation.

Herschel extended this understanding into the far-infrared, probing the cold dust and gas in star-forming regions, unveiling the most embedded, reddest and youngest protostars. It provided well characterised spectral energy distributions even for the deeply embedded protostars, enabling us to study the earliest stages of star formation, providing detailed views of protostellar environments and revealing the interaction between energetic outflows and the protostellar envelopes, thus allowing us to study mechanical and radiative feedback.

JWST is now revolutionizing the field with its unparalleled spatial and spectral resolution. JWST's ability to observe protostellar jets and winds in unprecedented detail has provided new insights into their launching, propogation and feedback mechanisms, leading to a new paradigm in which disk winds drive accretion thereby making star formation possible. Additionally, JWST's rich spectra of protoplanetary disks are revealing the chemistry of planet-forming regions, offering crucial insights into the building blocks of planetary systems.

This talk will synthesize these transformative discoveries, demonstrating how Spitzer, Herschel, and JWST have collectively advanced our understanding of the formation and evolution of stars and planetary systems, setting the stage for future explorations in the field.

ASI2025_477	Yogesh Chandra Joshi	Invited		
	Plenary			
Exploring Open Clusters to Unravel Galactic Structure				
Recent advancements have enhanced our understanding of the Milky Way formation and evolution through various				
stellar populations. Open star clusters, which populate the Galactic disk and trace the spiral arms with their younger				
stars, play a key role in such a study. A significant number of open clusters have been identified in the Milky Way				
through both optical and infrared observations, resulting in a significant enhancement in the open cluster sample and				
over 6,000 open clusters are already catalogued so far. This comprehensive data catalogue not only sheds light on the				
general characteristics of the open cluster system but also provides a great insights into the Galactic structure in our				
solar neighborhood. In this review talk, I will explore the Galactic open cluster systems and their role in understanding				
the structure of our galaxy.				

18th February 2025 Parallel Session – Sun, Solar System, Exoplanets and Astrobiology IV [Chairperson: Priyanka Chaturvedi] [Time: 11:45 – 13:00]

ASI2025_627	Sourav Chatterjee	Contributed Talk
	Sun, Solar System, Exoplanets, and Astrobiology	
Dyr	namical Processes Can Explain the Orbital Architectures of Kepler	's Multis
We now know of over	6000 confirmed exoplanets thanks to a large number of surveys.	n particular, the Kepler, K2,
and TESS missions dor	ninate the number of discovered planets. Interestingly, a large fra	ction of these planets are in
multi-transiting archite	ctures with closely-packed compact orbits. On one hand, the co	ompact nature of the orbits
increases the chance f	for dynamical instabilities. On the other hand, the multi-transiting	gnature which requires very
low mutual orbital incli	nations led people to think that dynamical instabilities may not ha	ave played an important role
for these systems. Recently, several studies have indicated that the separations between orbits in known multiplanet		
systems may indicate	past dynamical morphing. We show that indeed, dynamical ir	nstabilities previously more
compact systems with	n higher number of planets not only can simultaneously explain a	all observed distributions of
exoplanet properties, r	nany correlations between these properties naturally emerge as	a result of such instabilities
without any input from	formation theories. Our results thus suggest that most observed	trends in the multis may not
have been acquired by	birth, but by nurture through a variety of dynamical processes after	er birth. In my presentation I
will talk about the vario	ous dynamical processes that may have shaped the orbital archite	ectures of these multiplanet
systems.		

ASI2025_284	Jagabandhu Panda	Contributed Talk	
Sun, Solar System, Exoplanets, and Astrobiology			
Martian clouds a	nd their association with atmospheric dust distribution, dynamics	and thermodynamics	
Martian clouds are dist	inctive in nature compared to Earth's atmosphere. They appear in th	ne tropics as Aphelion Cloud	
Belt (ACB) or tropical of	cloud belt (TCB), as water ice clouds over volcanos, as polar hoo	d clouds over poles, etc., in	
Martian atmosphere.	The atmospheric dusts interact with these clouds in an inter	resting manner, i.e., either	
dynamically and microp	physically. Also, atmospheric thermodynamic characteristics play a	a significant role in governing	
these interactions. The	e objective of this study is to comprehend the Martian cloud cha	aracteristics in general and	
elucidate its association	on with dust distribution and atmospheric thermodynamics. Obse	rvations from Mars Climate	
Sounder (MCS) and M	lars Color Imager (MARCI) onboard Mars Reconnaissance Orbit	ter (MRO), and Mars Color	
Camera (MCC) onboar	d Mars Orbiter Mission (MOM) would be used besides the numer	rical modeling outputs from	
MarsWRF. The satellite observations helped in understanding the sub-seasonal, seasonal and inter-annual variability			
of clouds and the mic	of clouds and the microphysical interaction between dust and water ice enabling the analysis of TCB evolution.		
Besides, the influence of upper tropospheric dust is realized for the northward evolution of TCB. A strong association			
of high altitude dustine	ss with orographic clouds relating to Arsia and Olympus Mons. Thi	ck and thin clouds observed	
in the volcanic mounta	inous regions of Arsia and Olympus Mons have distinct characteris	stics. While the thick clouds	
are realized to be part	of ACB, the thin clouds are found to be influenced by vertical adv	ection. MarsWRF helped in	
isolating this type of dynamical influence of dust-laden vertical transport supported by mountain-induced regional			
circulation during the p	erihelion season. Besides upper tropospheric dustiness, the atmo	spheric thermodynamics is	
realized to have an ass	ociation with ACB and TCB's evolution too. The study also compr	ehended an indirect impact	
of global dust loading ir	n the north polar atmosphere during a global dust storm scenario.		

ASI2025_55	SHRADDHA BISWAS	Contributed Talk
	Sun, Solar System, Exoplanets, and Astrobiology	

Investigating the Potential Causes of Transit Timing Variations for TrES-2b in the Era of TESS.

Transit timing variations (TTVs) have emerged as a crucial methodology in the field of exoplanetary science, allowing researchers to detect and characterize exoplanets by examining fluctuations in their transit times. In our investigation of the TTVs associated with the hot Jupiter TrES-2b, we compiled data from 64 high-quality transit light curves obtained from all seven sectors of NASA's Transiting Exoplanet Survey Satellite (TESS). This dataset was further enhanced with 60 optimal light curves sourced from the Exoplanet Transit Database and integrated with 106 mid-transit times from previous research. Our comprehensive analysis of these transit timings indicated a significant improvement in the orbital ephemerides of TrES-2b; however, we did not detect any short-period TTVs that would suggest the presence of an additional body in the system. The lack of observable short-term TTVs encourages a deeper investigation into long-term TTVs, which could be influenced by phenomena such as orbital decay, apsidal precession, the Applegate mechanism, and the Rømer effect. Among these potential causes, orbital decay emerged as the most plausible explanation for the observed TTVs, supported by a Δ BIC value of 4.32. We estimate that the orbital period of TrES-2b is decreasing at a rate of approximately -5.58 ± 1.81 ms yr⁻¹. Assuming that this decay is primarily a result of tidal dissipation within the host star, we calculated the stellar tidal quality factor to be approximately 9.9×10^3 . This value is 2-3 orders of magnitude lower than theoretical predictions for other hot Jupiter systems, suggesting a more efficient tidal dissipation mechanism at play within the host star. To further elucidate the underlying causes of the observed changes in the orbital period, additional precise photometric and radial velocity measurements will be necessary.

ASI2025_15	Anirban Mandal	Contributed Talk	
Sun, Solar System, Exoplanets, and Astrobiology			
Analysing the grow	th and evolution of two regional dust storms using MRO-MCS, Cur	iosity, and Perseverance	
	observations		
Dust storms on Mars h	ave a complex relation to the dynamics and thermodynamics of th	e atmosphere. Although the	
formation of storms is	known, simultaneous orbital and ground-based observations are re	equired for a comprehensive	
understanding. This s	study analyses the growth and development of two regional	dust storms using orbital	
measurements and gro	bund based observations. The said dust storms were observed in N	1Y 36 around LS=153°-156°	
(RDS-A) and 310°-330	° (RDS-B). Observations from the Rover Environmental Monitoring	Station (REMS) onboard the	
Curiosity rover, the Mars Environmental Dynamics Analyzer (MEDA) onboard the Perseverance rover, and the Mars			
Climate Sounder (MCS) instrument from NASA's Mars Reconnaissance Orbiter (MRO) have been used in this study.			
Both storms showed an eastward expansion, while RDS-B additionally exhibited a southward expansion. The MCS			
observation-based ver	tical variation of stability indicates convection at the lower altitu	des (0-5 km) in the latitude	
range 40°S-90°N for RI	range 40°S-90°N for RDS-A. For RDS-B, strong convection is observed in the latitude range 90°S-40°N at altitudes 0-		
10 km. The dust mixing ratio from MCS observations indicates higher availability of dust at 30-55 km in the latitude			
range 40°S-40°N for RDS-A and at 20-60 km in the latitude range 90°S-45°N for RDS-B. The temporal variability of			
pressure from the MEDA and REMS observations shows a major variation in its amplitude for both storms, indicating			
baroclinic wave activity. The decrease in MEDA and REMS temperature for both storms indicates dust at higher			
altitudes, and the decrease in volume mixing ratio suggests prominent cooling during night time. Thus, the present			
study sheds light on the complex dust-lifting mechanisms and helps improve the understanding of the Martian			
atmosphere and dust cycle.			

18th February 2025 Parallel Session – Stars, Interstellar Medium, and Astrochemistry in Milky Way IV [Chairperson: Devendra Ojha] [Time: 11:45 – 13:00]

ASI2025_608	Drisya Karinkuzhi	Invited talk	
	Stars, Interstellar Medium, and Astrochemistry in Milky Way		
	Neutron capture processes and Galactic chemical evolution ()	
Elements heavier than	n iron are primarily produced by two neutron capture processes	, the slow neutron-capture	
process (s-process) ar	nd the rapid-neutron capture process (r-process). As low and inter	mediate stars reach the end	
of their lives, their phy	sical conditions are suitable for the s-process, which produces ha	alf of the heavy elements. A	
second half of the heav	second half of the heavy elements are formed when neutron stars or black holes merge under more exotic conditions.		
An intermediate neutr	An intermediate neutron-capture process is introduced to explain the double enrichment of s- and r-processes		
observed by a group of carbon-enhanced metal-poor (CEMP) stars, which occurs at conditions intermediate between			
those of s- and r-proce	those of s- and r-processes. Although most heavy elements have a fairly well-defined origin, the presence of multiple		
stable isotopes with di	stable isotopes with different nucleosynthetic origins still makes it unclear what role and contribution neutron capture		
processes play in their production. Additionally, peculiar behaviors shown by key elements such as C and N, have not			
yet been properly explained with the existing theories of stellar evolution and nucleosynthesis. Our recent attempts,			
based both on elemental abundances and isotopic abundances, to understand the role of different neutron capture			
processes on the production of heavy elements and also on the overall chemical enrichment of the galaxies will be			
discussed in my presentation.			

ASI2025_260	Ashish Kalyan	Contributed Talk	
	Stars, Interstellar Medium, and Astrochemistry in Milky Way		
VLBA Pulsa	r Astrometry of J0332+5434 and J1136+1551: Insights into Ionosp	heric Distortions	
Determining astronom	ical distances has significant challenges, with different distance	e scales relying on different	
methods. A parallax m	nethod is a direct approach for distance estimation, forming the	foundation of the so-called	
distance ladder, but its	utility is limited to a few kpcs due to small parallax contributions	at large distances. The most	
precise model-indeper	ndent distance measurements come from VLBI parallax campaign	s. VLBI provides the highest	
angular resolution ach	nievable with ground-based radio telescopes, providing corresp	ondingly precise positions.	
Relative astrometry offers more precise distances, determining the target position with respect to a background			
reference source at multiple epochs. In relative astrometry, the possible differences in the atmosphere sampled by			
the target and calibrator dominantly affect the precision of the position and, hence, the parallax measurements.			
Fortunately, numerous calibration techniques have been developed to reduce its effect (e.g., In-Beam calibration, 1D,			
2D interpolation, and	PINPT). Apart from the thermal noise in the measurements, t	the primary contribution to	
systematic uncertainti	es in L-band VLBI astrometry originates from the ionosphere, whicl	n depends on the separation	
between the target and the calibrator. Recently, a modified mapping function (Petrov23), which converts vertical total			
electron content (TEC) to slant TEC, aims to better compensate for the dispersive delays. The effectiveness of new			
approaches to correct dispersive delay using global ionospheric maps on astrometry is still questionable. In the talk, I			
will discuss the above	will discuss the above-mentioned calibration technique, refined astrometric parameters of the mentioned pulsars,		
and the effectiveness of	of the Petrov23 mapping function.		

ASI2025 323	Rahul Sharan	Contributed Talk
	Stars, Interstellar Medium, and Astrochemistry in Milky Way	
	Detection of nulling in millisecond pulsars using uGMRT observation	ons

Nulling pulsars are characterized by the absence of detectable pulsed signals. These are mostly seen in normal pulsars, and none of the millisecond pulsars (MSPs; pulsars with a spin period less than 30 ms) are known to show nulling to date. With a wide frequency coverage from 300-1500 MHz and a large collecting area, uGMRT becomes an ideal telescope for nulling studies on MSPs. We present results from an investigation, showing that the MSPs are exhibiting nulling phenomena using uGMRT observations. Our observations captured nulling in a few MSPs (J2144-5237, 0248+4230, J1646-2142 to name a few) in multiple observing epochs. We note that the effect of ionospheric scintillation is manifested in flux density variation over time and frequency, which can create confusion while identifying the underlying mechanism for nulling. We developed a new algorithm for searching nulls in time-pulse phase space, and compared our results with previous algorithms (Ritchings 1976, Kaplan et al. 2018) applied on normal pulsars. Since MSPs are intrinsically faint sources, they are classified as Intermittent Nuller (as per Konar & Deka 2019), which show nulling in a few seconds but single pulse nulls are not detected. We averaged for a few seconds and estimated the Nulling fraction (NF) and Nulling lengths (NL) of the MSPs. Finally, our study indicates that the phenomenon of nulling was not previously detected for the MSPs because of their faint nature; sensitive observations with upcoming and ongoing facilities aided with careful searching for nulling would enable us to increase the sample of nulling MSPs. This will be an important step for understanding the emission mechanism of MSPs and judging the likenesses of similar emission mechanisms for normal pulsars and MSPs.

ASI2025_579	Zenia Zuraiq	Contributed Talk	
	Stars, Interstellar Medium, and Astrochemistry in Milky Way		
	Explaining unusual observations using magnetized white dwar	fs	
Magnetic white dwarfs	(WDs) are a significant fraction of observed WDs, present in bot	h isolated and binary cases.	
The surface fields of th	ese magnetized WDs can range from \$10^3\$ to \$10^{10} \ G\$. The	ese magnetic fields can lead	
to various interesting e	ffects on the WD structure. As shown by our group in previous we	ork, high magnetic fields can	
lead to the modificatio	n of the Chandrasekhar mass limit through both classical and qua	antum effects. This can lead	
to the super-Chandrasekhar WDs inferred from the observations of peculiar over-luminous type Ia supernovae (e.g.			
SNLS-03D3bb). Magnetized WDs can also be linked to other unusual sources that do not satisfy conventional			
explanations. These include extremely slow rotating pulsars (e.g. J0901-4046, GLEAM-X J162759.5-523504.3).			
These could be WD pulsars, analogous to the confirmed case of AR Scorpii. Another class of unusual pulsars is the			
soft gamma-ray repea	aters (SGRs) and anomalous X-Ray pulsars (AXPs). These are	hypothesized to be highly	
magnetized neutron st	ars. However, a few of these (e.g. SGR 0418+5729) show lowe	er magnetic fields than that	
expected from the neutron star based model. In this work, we explore time-dependent simulations of the evolution of			
main sequence stars to magnetized WDs. We provide a link between these unusual observations (peculiar			
overluminous type la s	supernovae, extremely slow rotating pulsars, lowly magnetized S	GRs/AXPs) and magnetized	
WDs.			

18th February 2025 Parallel Session – High Energy Phenomena, Fundamental Physics and Astronomy IV [Chairperson: Indranil Chattopadhyay] [Time: 11:45 – 13:00]

ASI2025_609	Bhargav Vaidya	Contributed Talk	
	High Energy Phenomena, Fundamental Physics and Astronomy		
Simulatin	g Astrophysical and Space Plasma Jets in the Era of Multi-messen	ger Astronomy.	
Particle acceleration is a	prevalent phenomenon observed in astrophysical and space plasma jets	s, particularly in our Sun, young	
stars, and Active Galaxie	s. Various mechanisms energize particles in these environments, intera	acting in a complex, non-linear	
manner across different	time and length scales, making it challenging to identify the physical	processes that drive particle	
acceleration. Specifically	, jets from Active Galactic Nuclei (AGN) are relativistic beams of pla	sma that encounter magnetic	
instabilities, leading to sh	nocks, turbulence, and reconnection events within the jet. These process	ses are essential for regulating	
the primarily non-thermal emission across multiple wavebands from AGN jets. In my presentation, I will share recent research			
aimed at elucidating the relationships between these phenomena. Our findings use a hybrid Eulerian and Lagrangian modeling			
framework that captures large-scale jet dynamics while integrating micro-physical aspects like particle acceleration and radiative			
cooling at a sub-grid level. The interaction of shock and stochastic acceleration mechanisms will be discussed, based on			
axisymmetric simulations of radio lobes conducted within this framework. Additionally, I will describe our study of unusual radio			
features in AGN jets, showcasing high-resolution, three-dimensional relativistic magnetohydrodynamic (MHD) simulations. These			
simulations compare the ribs and tethers observed in the "MysTail" radio galaxy from the Abell cluster 3266, as part of the			
MeerKAT Galaxy Cluster Legacy Survey. The role of kink instability-driven phenomena in producing these features will also be			
emphasized. Finally, I will present initial results from a novel 3D relativistic MHD simulation of a plasma column, focusing on			
reconnection zones and their implications for driving rapid variabilities in TeV emissions			

ASI2025_466	Vivek Baruah Thapa	Contributed Talk
	High Energy Phenomena, Fundamental Physics and Astronom	У
Inferring the Equation of State for Dense Matter in Neutron Stars: A Bayesian Perspective on Antikaon Condensation		
This work employs the De	ensity-Dependent Relativistic Hadron (DDRH) model in a Bayesian frame	ework to study dense matter in
neutron stars with antikaon (\$K^-\$ and \$\bar{K}^0\$) condensation. By constraining parameters through nuclear properties and		
observations of pulsars and the GW170817 event, we estimate the antikaon potential to be around \$-129.36\$ MeV, aligning with		
values from previous studies. Antikaon condensation notably softens the equation of state (EOS), reducing the maximum mass		
of neutron stars to around 2M\$_\odot\$ and lowering the speed of sound. While \$K^-\$ condensation is unlikely in standard neutron		
stars, both \$K^-\$ and \$\bar{K}^0\$ are feasible in higher-mass stars, revealing insights into the EOS and neutron star properties in		
dense matter.		

ASI2025_621	Santabrata Das	Contributed Talk
	High Energy Phenomena, Fundamental Physics and Astronom	У
	Relativistic hot accretion flows around black holes	
We examine relativistic v	iscous advective accretion flows around black holes, focusing on the for	mation and dynamics of shock
waves in these extreme environments. As matter spirals into the black hole, relativistic effects significantly alter the flow, leading		
to shock formation due to the interplay between attractive and repulsive forces acting on the inflowing material. By solving		
hydrodynamic and magnetohydrodynamic equations, we analyze how these shocks influence temperature and density profiles,		
enhancing energy dissipation and driving high-energy radiation emissions. Space-based X-ray observations play a crucial role in		
validating these models, as the high-energy radiation produced by such shocks is often observed in the X-ray spectrum, especially		
in active galactic nuclei, X-ray binaries and ultra-luminous X-ray sources. Our findings contribute to a deeper understanding of		
accretion processes in strong gravitational fields, offering insights into the energetic phenomena observed in these astrophysical		
systems.		

ASI2025_693	Nafisa Aftab	Contributed Talk
High Energy Phenomena, Fundamental Physics and Astronomy		
ECLIPSE DOES NOT HIDE, BUT REVEALS: Comprehensive X-ray Reprocessing Studies in High and Low Mass X-ray		

Binaries with XMM-Newton

X-ray reprocessing serves as a vital diagnostic tool for gaining insights into the environments of X-ray binary systems. However, the study of X-ray reprocessing encounters challenges arising from the blending of intense primary radiation from the compact star with the reprocessed radiation from the surrounding. Eclipsing X-ray binaries offer a unique opportunity to investigate pure reprocessed X-rays, as the companion star effectively shields the intense primary Xrays. We carried out first comprehensive studies of X-ray reprocessing in most of the eclipsing High Mass X-ray Binary (HMXB) and Low Mass X-ray Binary (LMXB) systems by comparing their X-ray spectra during and outside of eclipse using XMM-Newton. We found ample diversity in the X-ray reprocessing characteristics in HMXBs, which implies significantly dynamic wind structure surrounding the compact objects in HMXBs. Significant differences observed in X-ray reprocessing characteristics in LMXBs despite all being dipping and eclipsing sources, suggest large dependencies of X-ray reprocessing on the inclination angle, scale height of the accretion disk, relative size of the accretion disk with respect to the companion, binary separation, mass ratio between the neutron star, the companion etc. Our studies revealed unexpected X-ray behaviors. For instance, (i) we observed high equivalent widths of Fe emission lines in both SgHMXBs and SFXTs during eclipse, indicating high Fe abundance, contrary to earlier findings showing low equivalent widths in SFXTs outside of eclipse. (ii) Cen X-3 showed a lower Fe Ka equivalent width during eclipse than outside, unlike other SgHMXBs. (iii) In 4U 1538-522, low-energy X-rays were not obscured during eclipse as expected. (iv) LMXBs showed a smaller out-of-eclipse to eclipse flux ratio than HMXBs, suggesting greater reprocessing despite less dense stellar winds. Overall the studies deepen our understanding of the intricate interplay between X-ray reprocessing and the diverse mechanisms within X-ray binary systems.

ASI2025_589	Sandeep Rout	Contributed Talk	
	High Energy Phenomena, Fundamental Physics and Astronomy		
Disc	overing hidden variability components in Cygnus X-1 using AstroS	at/LAXPC	
The power spectrum of	an X-ray binary can be decomposed into a multi-Lorentzian model	that are coherent in different	
energy bands but incol	nerent with each other. By simultaneously fitting the power spect	ra in two bands and the real	
and imaginary parts of	the cross spectrum with such a model one can also predict the p	hase lag and coherence. By	
using this novel technic	que on NICER observations of black-hole binaries, recently it has b	een shown that there exists	
variability components	that have a strong imaginary part but a weak real part, hence are	not significant in the power	
spectrum. A character	istic feature of this "hidden" imaginary component is an abrupt d	rop in coherence and rise in	
the phase lag within a narrow frequency band. These imaginary components in the cross-spectrum were initially			
thought to arise only due to the soft X-ray coverage provided by NICER. In this work we carry out a systematic search			
of these components in Cygnus X-1 with data from AstroSat/LAXPC during the 2016-17 state transition. In order to			
reduce the dead-time effects at higher frequencies, we evaluated all the Fourier products from the cross-spectra			
between two LAXPC ι	inits (also called co-spectra). This resulted in a much improved	correction of Poisson noise	
compared to the tradit	ional methods. By analyzing ten observations during the transitior	n from the hard to soft state	
we discovered, for the	first time, the aforementioned narrow imaginary components in the	e cross-spectral products of	
higher energy bands, i.	e. 3-5 and 6-20 keV. The frequency of these components spanned	d 0.01-0.1 Hz and increased	
with decrease in hardr	ness. The presence of these components suggest that the power	spectrum likely consists of	
several independent ad	dditive components originating from different regions, thus providir	ng important implications for	
the various models of variability.			

ASI2025_658	Vivek Kumar Agrawal	Contributed Talk	
	High Energy Phenomena, Fundamental Physics and Astronomy		
Initial science results from X-ray Spectroscopy and Timing (XSPECT) instrument.			
XSPECT is an X-ray Spectroscopy and Timing payload, on-board XPoSat, launched in January 2024. XSPECT is			
sensitive in the energy band 0.8 - 15 keV with moderate spectral resolution (<180 eV at 6 keV) and time resolution (
~1ms). The instrument is carrying out long duration observation of select bright X-ray sources which includes: Neutron			
Star low-mass X-ray binaries, X-ray Pulsars and black-hole X-ray binaries. In this talk, I will highlight some initial			
science results obtained using the data from this payload.			

18th February 2025 Parallel Session – Galaxies and Cosmology IV [Chairperson: Yogesh Chandola] [Time: 11:45 – 13:00]

ASI2025_320	Shivam Burman	Contributed Talk	
	Galaxies and Cosmology		
Unveiling	g Galactic Magnetism: Probing Magnetic Field Profiles with Backgr	ound Quasars	
Understanding the mag	gnetic fields in distant galaxies is key to exploring how these galax	kies evolve and interact with	
their surroundings. By	utilizing the rotation measure (RM) of the background quasars,	we have developed a radial	
profile of the magnetic	c field in a typical high redshift galaxy. We used Mg II absorptio	n systems to identify these	
intervening galaxies by	implementing redshift matching criteria in which the spectroscopic	c redshifts must lie within 3 σ	
of the photometric reds	shifts, followed by visual checks. We obtained a sample of 59 qua	sar-galaxy pairs. The quasar	
line-of-sights passes th	line-of-sights passes through various impact parameters (D) up to 160 kpc, covering the circumgalactic medium of a		
typical Milky-Way type	typical Milky-Way type galaxy. Utilizing the galactic RM removed residual rotation measure (RRM) of these sightlines,		
we estimated the exce	ss in RRM dispersion, which translates to the magnetic fields by c	onsidering a typical electron	
density. Our findings showed that the magnetic fields are stronger closer to the galaxy's disk, averaging about 2.39 μG			
up to 50 kpc, and decreasing to 1.67 µG beyond 50 kpc. This observation fits well with the studies based on simulations			
and sheds light on how magnetic fields behave not just in the dense parts of galaxies, but also in their more diffuse			
outer regions. Our technique offers a promising approach for future surveys like LOFAR and the Square Kilometre Array			
(SKA), which could help us in understanding even more detailed structures of galactic magnetic fields in high redshift			
galaxies.			

ASI2025_681	PRALAY BISWAS	Contributed Talk	
Galaxies and Cosmology			
lde	entification and study of the Optically invisible galaxy population wi	th JWST	
At z > 3, the Hubble Sp	ace Telescope (HST) struggles to capture the rest-frame optical lig	ht from galaxies, limiting our	
comprehension of sta	r-forming galaxies in this epoch. As a result, much of our know	vledge relies on rest-frame	
ultraviolet observation	is, leaving us in the dark about certain galaxy populations—spe	cifically, the UV-faint, dust-	
obscured, and quiesc	ent galaxies. These elusive entities, referred to as HST-dark o	or HST-faint galaxies, have	
previously been identif	fied through Spitzer/IRAC or ALMA submillimeter observations, bu	t their precise redshifts and	
spectral energy distri	butions (SEDs) remain uncertain due to insufficient photome	etric data. For a complete	
understanding of the e	early galaxy evolution processes, detection and study of the phys	sical properties of HST-dark	
-	. Using recent JWST wide and medium band NIRCam photometry fi	-	
obtain unprecedentedly reliable redshift and SED properties. We simultaneously estimated redshift and SED			
properties of around 22	2000 galaxies from the JWST UNCOVER survey using Bayesian Ana	lysis of Galaxies for Physical	
Inference and Parame	ter EStimation (BAGPIPES). Applying a colour cut of F160W–F44	4W > 2.0 and restricting the	
sample to F160W > 2	sample to F160W > 27, we identify around 100 HST-dark galaxies. As expected, these colour-selected HST-dark		
galaxies are dusty with	galaxies are dusty with 25% having strong dust attenuation, AV > 2. The UVJ diagram commonly used to classify dusty		
and quiescent galaxies also corroborates that. Previous studies of HST-dark galaxies show that these galaxies are			
massive with moderate SFRs. However, our sensitive JWST data show that HST-dark galaxies could be less massive			
with a low star formation rate. Apart from very few quiescent HST-dark galaxies, they largely follow the star-forming			
	main sequence. Our analysis shows that dusty galaxies at $z > 3$ are more numerous than previously thought and		
provide crucial inform	provide crucial information about the lower mass galaxies missed previously due to the limited sensitivity of high		
redshift surveys.			

ASI2025_402 Salmoli Ghosh Contributed Talk Galaxies and Cosmology

Understanding Radio-quiet AGN Jet Morphologies and Feedback Mechanisms from Parsec to Kiloparsec Scales The discovery of kiloparsec-scale radio structures (KSRs) in radio-quiet (RQ) AGN offers a unique opportunity to address questions about the origins of radio emission in RQ AGN, differences in radio-loudness, and why RQ jets are typically confined within host galaxies compared to radio-loud (RL) jets, which can extend into the IGM. Using interferometric telescopes worldwide with resolutions spanning parsec to kiloparsec scales allows us to investigate these phenomena in unprecedented detail. For instance, near the jet-launching region, ~80% of flux is lost from milliarcsecond to arcsecond scales, indicating a decrease in emission compactness with distance (e.g., Orienti & Prieto 2010). We are primarily focused on identifying the causes of jet decollimation or widening. Our study examines nine KSRs, including Seyferts and LINERs from the CfA and extended-12micron samples, using a suite of telescopes, namely, VLBA, EVN, eMERLIN, VLA, uGMRT to probe jet-medium interactions at multiple scales. We report findings on phenomena such as jet-bending, jet-braking, jet-flaring, and instances of multiple restarted activities. These results are consistent with theoretical simulations (e.g., Saxton et al. 2005; Mukherjee et al. 2018), providing key constraints on jet dynamics and the surrounding medium's properties. In a broader sample of RQ AGN, our analysis also includes polarization, total intensity, and spectral index imaging at kiloparsec scales, revealing dependencies of jet kinetic power on black hole mass that potentially inform jet-launching mechanisms. Observed magnetic field orientations suggest significant AGN-driven contributions, including AGN winds, while optical emission near the radio regions indicate gas entrainment, evacuation, and ionization-signifying both positive and negative feedback. We will present observational results from a multi-scale, multi-band study of RQ AGN providing insights about jet-medium interaction for these sources.

ASI2025_187	Pradyumna Sadhu	Contributed Talk
	Galaxies and Cosmology	

Satellites galaxy abundances in clusters of galaxies within ACDM: from ultrafaints to ellipticals

Current cosmological simulations lack the resolution to make reliable predictions for faint and ultra-faint dwarf satellites, which will become a crucial test of the LCDM model in the upcoming era of the Vera Rubin Observatory and the Roman Space Telescope. To this end, we utilize an analytical model fitted to high-resolution controlled simulations to extend the predictions of the TNG50 cosmological numerical simulations to ultrafaint dwarf regime. We focus on 3 clusters with virial masses ~1e14 Msun, comparable to the Virgo and Fornax clusters, and characterize their luminous satellite population from ultrafaint dwarfs to massive elliptical galaxies. We find that under the assumption of cuspy dark matter halos such as NFW profiles, the majority of all satellite galaxies survive within cluster environments, expecting 10-100 thousand luminous satellites within the virial radius of such clusters. This is contrary to the results directly from the simulation where satellites get merged artificially due to poor numerical resolution. We determine the radial distribution of satellites, finding massive satellite (Mstar > 1e8 Msun) to align well with matter distribution of the cluster while dwarfs display a cored profile. Additionally, tidal evolution drives evolution of satellites along the canonical size-mass relation observed for Local Group and Virgo satellites.

ASI2025_537	Anilkumar Tolamatti	Contributed Talk	
	Galaxies and Cosmology		
	Observations of high redshift gamma-ray blazars with MACE		
High redshift blazars are t	he most powerful gamma-ray sources with central supermassive blackho	oles (SMBH) in excess of billion	
solar masses. They are the extraordinary probes to cosmological evolution blazars' SMBH and their connection with powerful			
relativistic jets. Detection of more than 3500 blazars by the space-based Fermi -Large Area Telescope (LAT) in the high energy			
(HE, above 100 MeV) band reveals that a significant amount of power carried by the relativistic plasma jets in blazars is dissipated			
at gamma-ray energies. However, a small fraction of only less than 3% are detected at very high energies (VHE, above 30 GeV) by			
the ground-based Cherenkov telescopes. Therefore, their detection at the highest possible energies is extremely important to			
understand the blazar-phenomenon in the Universe. In this paper, we report observational results obtained from the recent			
monitoring of a sample of high redshift (z > 0.3) blazars with the Major Atmospheric Cherenkov Experiment (MACE) in the energy			
range above \sim 80 GeV. We also use the Fermi -LAT measurements to constrain their gamma-ray emission behaviour.			

18th February 2025
WGGE Session
[Time: 14:00 - 15:10]

ASI2025_804	Jessica Dempsey	Invited
Plenary		
Solving the science equity problem: psychology and statistics		
The answer to systematic gender equity across the science disciplines lies in a holistic approach. Mapping the		
representation at all levels of advancement, tracking retention, and modelling the potential solutions have been shown		
to drive science organisations to better representation. Sustaining diversity, accelerating women's careers, requires		
overcoming the psychological resistance to change and prioritising creation of inclusive academic and work		
environments.		

18th February 2025 Parallel Session – Stars, Interstellar Medium, and Astrochemistry in Milky Way V [Chairperson: T. Sivarani] [Time: 17:00 – 18:00]

ASI2025_631	Lupamudra Sarmah	Contributed Talk	
	Stars, Interstellar Medium, and Astrochemistry in Milky Way		
Asteroseismi	c insights into Barium stars: Probing companion information and fo	ormation pathways	
Barium (Ba) stars are a	group of G-K-type stars found across dwarf and giant phases that	exhibit unusually enhanced	
abundances of slow (s	abundances of slow (s) neutron-capture elements. This enhancement is often attributed to binary mass transfer from		
an asymptotic giant bra	nch (AGB) companion, which has now become a CO white dwarf (ND). However, the accretion	
and mass transfer in	these systems remains poorly understood. In this study, we	have performed a detailed	
asteroseismic analysis	asteroseismic analysis of a sample of 20 Ba dwarf and giant systems with known orbital parameters in the TESS		
(Transiting Exoplanet Survey Satellite) field. We derived precise seismic masses of the primary Ba stars and then			
estimated companion	WD mass and their progenitor AGB masses. Our results sho	ow that Ba stars have two	
populations of AGB co	mpanions, with the majority having low-mass AGB companions	but showing a wide range of	
[s/Fe]. This suggests th	at dilution after mass transfer may play an important role. Interesti	ngly, the masses of the WDs	
also revealed 3 peculiar Ba stars (2 giants and 1 dwarf) with Helium (He) WD companions (<0.5M☉). This finding			
contradicts the standard mass-transfer hypothesis, as the progenitors of He WDs do not go through the AGB phase.			
In this talk, I will present these findings and discuss the possible alternative formation pathways for these peculiar			
cases of Ba stars.			

ASI2025_458	Susmita Das	Contributed Talk	
	Stars, Interstellar Medium, and Astrochemistry in Milky Way		
	An updated theoretical scenario of BL Herculis stars		
We present theoretica	l period-luminosity (PL), period-Wesenheit (PW) amd period-radi	us (PR) relations at multiple	
wavelengths (Johnson	-Cousin-Glass bands UBVRIJHKLL'M and Gaia passbands GG	BPGRP) for a fine grid of	
convective BL Herculis	models computed using the non-linear radial stellar pulsation too	l MESA-RSP. The non-linear	
models were comput	ed for periods typical for BL Her stars, i.e. $1 \le P$ (days) ≤ 4 cove	ering a wide range of input	
parameters: metallicity (-2.0 dex≤ [Fe/H]≤ 0.0 dex), stellar mass (0.5M ⊙ -0.8M ⊙), luminosity (50L ⊙ -300L ⊙)			
and effective temperature (full extent of the instability strip; in steps of 50K). We investigate the impact of four sets of			
different convection p	parameters on multi-wavelength properties. Most empirical rela	ations match well with the	
theoretical PL, PW and PR relations from the BL Her models computed using the four sets of convection parameters.			
No significant metallicity effects are seen in the PR relations. We carry out a robust light curve optimization technique			
to obtain the best observed-model pairs for the BL Her stars in the LMC. We also extend our study to include			
theoretical relations in the Rubin-LSST passbands. In addition, we also explore the mass of the prototype BL Herculis			
itself using simultaneous fitting of the observed light curve and radial velocity curve with those from the model that			
exhibits the best goodness-of-fit.			

ASI2025_216	Muhammed Riyas A	Contributed Talk	
	Stars, Interstellar Medium, and Astrochemistry in Milky Way		
[Dissecting r-Process Elemental Abundance Trends in CEMP Subcl	asses	
Metal-poor stars forme	ed in the early universe reveal crucial information about early chem	ical evolution. Many of these	
stars, especially in the	Milky Way's halo, are enriched in carbon ([C/Fe] $>$ 1.0) and are k	nown as Carbon-Enhanced	
Metal-Poor (CEMP) sta	rs. CEMP stars are categorized into CEMP-r, CEMP-s, and CEMP-r	s types based on their heavy	
element enrichment via	a the slow (s-process) and rapid (r-process) neutron capture proce	esses. The s-process occurs	
in low- to intermediate	-mass stars, while the r-process likely occurs in neutron star mer	gers or specific supernovae.	
However, the origin of	However, the origin of CEMP stars enriched in both s- and r-process elements (CEMP-r/s stars) remains uncertain.		
Increasing evidence s	Increasing evidence suggests that the intermediate neutron capture process (i-process) may explain this dual		
enrichment by produci	ng r-process elements in conditions between those of the s- and	r-processes. These, studies	
focus mainly on eleme	focus mainly on elements like Eu, Gd, and Dy, while extreme r-process elements, such as Tb, Tm, Yb, Ho, Ta, and Th,		
remain unexplored due to their sensitive lines falling in the near-UV range. In our recent analysis we derive the			
abundances of extreme r-process elements in a samle of CEMP-rs stars using their bluer spectra acquired using UVES			
spectrograph connecte	spectrograph connected to 8m VLT. Our analysis indicates that extreme r-process elements can also be produced by		
the i-process. We confirm our results by comparing observed abundances with nucleosynthetic predictions from low-			
metallicity, low-mass asymptotic giant branch (AGB) stars, a potential sites for the origin of CEMP-s and CEMP-rs			
stars (Karinkuzhi et al. 2021; Choplin et al. 2021), after including extended networks for both s-process (Goriely &			
Siess 2018) and i-process (Choplin et al. 2021) reactions.			

19th February 2025 Plenary Session IV [Chairperson: Ajit Mohan Srivastava] [Time: 9:15 - 9:55]

ASI2025_792	Pravata Mohanty	Invited	
	Plenary		
	Recent results from the GRAPES-3 Experimen	t	
The GRAPES-3 experiment located in Ooty, Tamil Nadu recently discovered a hardening in the cosmic ray proton			
spectrum above 165 TeV which disfavours single power law description of the spectrum up to the Knee energy (~3			
PeV). The measurements were performed over an energy range of 50 TeV to 1.3 PeV using the data collected with a			
high density array of plastic scintillators and a large area muon telescope, bridging the gap between space-based and			
ground-based measurements. Furthermore, two significant small-scale anisotropic structures in the cosmic ray			
arrival distribution were detected at a median energy of 16 TeV, consistent with results from the HAWC and ARGO-			
YBJ experiments. Both these results could enhance our understanding of cosmic ray sources and acceleration			
mechanisms. This presentation will highlight these findings, along with updates on the status of the detector upgrade			
and future plans.			

Posters in Sun, Solar System, Exoplanets and Astrobiology

ASI2025_611	Aditya Jain	Poster		
5	Sun, Solar System, Exoplanets, and Astrobiology			
Rossby wave in	stability and vortex properties in tu	Irbulent protoplanetary disks		
Several millimeter/sub-mm observati	ons have shown the presence of no	on-axisymmetric structures in protoplanetary disks.		
Gravitational coupling of young planet	s with the proto-planetary disks can §	give rise to spiral density waves. These spiral density		
waves manifest observationally in form	waves manifest observationally in form of non-axisymmetric structures like rings, gaps and crescent like shapes. These structures			
may be a result of vortex formation wh	ich in turn are excited by Rossby wave	e instabilities. The lifetime of the vortex present in the		
protoplanetary disk is an important p	arameter in planet formation through	dust entrapment and collection. There are several		
factors such as disk temperature, magnetic fields, disk turbulence and other instabilities which can influence vortex stability. In				
this work, we study the impact of thermal and viscous properties of disk on vortex lifetime through 2D hydrodynamic simulations.				
We introduce thermal properties in the disk through a non-isothermal process. Through these simulations, we find that the				
thermodynamic and viscous properties of the disk affect the vortex lifetime in a competing manner. We also explore the role of				
MHD driven winds in the protoplanetary disk and it's role in planet-disk interaction.				

ASI2025_624	Anshu Kumari	Poster	
Sun, Solar System, Exoplanets, and Astrobiology			
Spatial Fragm	Spatial Fragmentation in Solar Flares Investigated through Radio Emission		
Type III solar radio bursts are fast frequ	ency-drifting emission features, typic	ally from higher to lower frequencies at the rates up	
to 100 MHz per second. These bursts,	spanning a broad frequency range fro	m 10 kHz to 1 GHz, are commonly associated with	
active regions and solar flares, and the	ey are the most frequently observed so	olar radio phenomena. Type III bursts signify beams	
of energetic electrons propagating three	ough the solar corona along open mag	netic field lines. In this study, we analyzed a series	
of co-temporal type III radio bursts and	of co-temporal type III radio bursts and Ha flare events using a combination of datasets from the Nançay Radioheliograph (NRH,		
in imaging mode); and e-CALLISTO (observing in Sun-as-a-star mode), the Global Oscillation Network Group (GONG), and the			
Multi-Application Solar Telescope (MAST) at the Udaipur Solar Observatory (USO) . We used NRH's high temporal resolution			
imaging to locate the spatial centroids of Type III radio burst sources and correlated these with MAST's Hα observation. We			
compared radio burst locations with the corresponding active regions where flares originated. This simultaneous tracking of			
active region and corresponding radio emission in two different layers of the solar atmosphere, the middle chromosphere (Ha)			
and the middle corona (radio), was used to investigate the spatial fragmentation of energy release during solar flares.			

ASI2025_31	Arkaprova Dutta	Poster
S	un, Solar System, Exoplanets, and	Astrobiology
	Exoplanets Around Sub-Gian	t Stars
Evolved stars, particularly sub-giants,	have been underrepresented in most	planet search surveys, which traditionally focus on
solar-type main-sequence stars. The	quest for exoplanets around sub-gian	t stars offers crucial insights into planet formation
and evolution in the context of evolv	ed stellar environments. This study o	comprehensively reviews well-studied exoplanets
around sub-giant stars, emphasizing their detection methods, orbital properties, and atmospheric characterization and		
compares them with well-studied properties of exoplanets around the main sequence stars. We also discuss the broader		
implications of our findings for understanding exoplanet frequency and migration mechanisms across different spectral types.		
This work lays the groundwork for our long-term planet search project, wherein we curate a candidate list for potentially suitable		
stars to host planets using homogeneous properties from the GAIA DR3 catalogue to follow up using high-resolution		
spectroscopy aimed at detecting new exoplanets around sub-giant stars (including the stars in the list with limited or no high-		
precision radial velocity measurements) and modelling their orbits. We anticipate that the outcomes of this research will		
significantly contribute to the growing body of knowledge regarding planetary systems and their formation histories.		

		2	
ASI2025_283	Ashish Devaraj	Poster	
	un, Solar System, Exoplanets, and		
Observational Evidence Contrast	ing the Linear PSD Model: Non-Lin	ear Correlations of Solar EUV/FUV Radiation	
	with Lunar Sodium		
Photon-stimulated desorption (PS	D) is a non-thermal process wher	e high-energy photons release surface-bound	
atoms, such as sodium, from plane	tary bodies like the Moon. To exam	ine the link between solar Extreme Ultra-Violet	
(EUV) radiation above 8.8 eV and	d sodium release from the lunar	surface through PSD, we use simultaneous	
measurements of EUV photon flux	and Na optical spectral line flux f	rom the lunar exosphere. Data were collected	
using the high-resolution (R\$\sim\$	72000) Echelle Spectrograph on th	ne 2.34-m Vainu Bappu Telescope during first-	
quarter lunar phases (January-Mar	ch 2024), observing Nal D2 and D1	flux below \$\sim\$590 km. Simultaneous EUV	
and FUV data were obtained from t	and FUV data were obtained from the GOES-R Extreme Ultraviolet Sensor (EUVS), and NUV data from the Total and		
Spectral Solar Irradiance Sensor-1 (TSIS-1) on the ISS. We correlated the Na spectral line flux with EUV photon flux			
in six EUVS bands spanning 256-1405 \$\AA\$ (48.5-8.8 eV) and NUV data (2000-4000 \$\AA\$) from TSIS-1. Our			
results reveal a non-linear increase in lunar exospheric sodium with rising EUV and FUV fluxes between 8.8-48.5 eV,			
contrasting with previous linear PSD models. We confirm that EUV radiation above 10 eV contributes to sodium			
release via PSD, with wavelengths 256-304 \$\AA\$ playing a significant role. Additionally, we observe a positive			
correlation between NUV flux and sodium optical line flux, supporting NUV involvement in sodium release. The line-			
of-sight column density averages \$5.71 \times 10^{9}\$ atoms cm\$^{-2}\$, with Chamberlain temperatures averaging			
6721 \$\pm\$ 127 K and scale heights of 1494 \$\pm\$ 28 km, consistent with non-thermal processes. Higher			
temperatures and sodium densities during solar activity suggest an enhanced Na release during solar flares. These			
findings indicate a need to revise the PSD model for photon energies above 8.8 eV and establish more precise			
constraints on the PSD cross-section in this range.			

ASI2025_361	Asif Mohamed Mandayapuram	Poster	
S	Sun, Solar System, Exoplanets, and Astrobiology		
Simultaneous observations of ele	emental abundance evolution duri	ng solar flares using InspireSat-1 DAXSS and	
	Chandrayaan-2 XSM		
Solar Flares are powerful bursts of	of radiation from the solar atmosp	where caused by the sudden reorganization of	
magnetic topology. Soft X-ray (0.	1-10 nm) spectroscopic observa	tion is an excellent probe for the elemental	
composition of 5-30 MK plasma	formed during solar flares. The	time cadence and sensitivity of soft X-ray	
spectroscopic instruments such	as InspireSat-1 Dual Apertur	e X-ray Solar Spectrometer (DAXSS) and	
Chandrayaan-2 Solar X-ray Monito	or (XSM) make it possible to inves	stigate the evolution of plasma during various	
phases of the flare, in particular how	w the abundances of low First Ionis	ation Potential (FIP) elements vary during solar	
flare. Here, we investigate how	flare. Here, we investigate how various flare parameters, namely flare temperature, emission measure, and		
elemental abundances, vary during	elemental abundances, vary during the flare for a sample of 15 flares (C to M class) that have simultaneous X-ray		
spectroscopic observations from D	spectroscopic observations from DAXSS and XSM. X-ray spectra during flares are modeled as the sum of emissions		
from two isothermal temperature components with common elemental composition to obtain estimates of			
abundances of Mg, Si, S, Ar, Ca, and Fe along with the temperature and emission measure of individual components.			
We find that the temperature, emission measure, and variation in elemental abundances, as estimated from DAXSS			
and XSM, agree quite well for most of the studied flares. Our results show that the elemental abundances show a			
decrease from coronal values and towards photospheric values for low-FIP elements at the peak of the flare and			
start to recover during the decay phase of the flare, similar to recent previous reports for smaller events. We discuss			
the analysis results and their implications for understanding processes such as chromospheric evaporation during			
solar flares.			

ASI2025_62	Avinash Salguneswaran	Poster
Sun, Solar System, Exoplanets, and Astrobiology		
Updated Ephemeris of WASP-18 b and Investigation Into the Existence of WASP-18 c		

We present an updated ephemeris for the exoplanet WASP-18 b and investigate the potential existence of a second planet, WASP-18 c. Utilizing 140 transit light curves from the Transiting Exoplanet Survey Satellite (TESS), Exoplanet Watch, and the Exoplanet Transit Database (ETD), we derived a refined ephemeris for WASP-18 b, resulting in a midtransit time of 2460298.55709±0.000026 BJDTDB and an orbital period of 0.941452404 \pm 1.4 \times 10-8 days. This improved ephemeris reduces uncertainty in future transit predictions, which is essential for scheduling space-based observations like JWST and ARIEL. Additionally, we analyzed 67 radial velocity (RV) observations from the CORALIE and HARPS spectrographs to search for periodic signals indicative of an additional planetary body. Our analysis revealed no significant transit timing variations (TTVs) or RV signals supporting the existence of WASP-18 c. The absence of detectable periodic signals in the TTV and RV data suggests that any potential second planet does not produce strong perturbations on WASP-18 b's orbit within current observational limits. This work enhances the understanding of the WASP-18 system and provides a valuable resource for future observational campaigns.

ASI2025_539	Ayanabha De	Poster	
S	Sun, Solar System, Exoplanets, and Astrobiology		
Detectability of Snow-lines in pro-	toplanetary disks and photometric	variation of directly imaged exoplanets using	
	SCALES		
Context: SCALES (Slicer Combine	ed with Array of Lenslets for Exc	oplanet Spectroscopy) is the first exoplanet-	
dedicated integral field unit (IFU) pl	anned to be commissioned on Ke	ck in 2025. Backed by the best adaptive optics	
and the 10m aperture of Keck, SC/	ALES shall provide a unique and p	owerful opportunity to spectrally characterize	
exoplanet atmospheres and study	protoplanetary disks in more deta	il than ever at 2-5 microns wavelength ranges.	
Aim: This work explores the feasib	ility of two different science case	s with SCALES. 1) Detectability of snow lines	
(e.g. of water, CO2 and CO) in face	(e.g. of water, CO2 and CO) in face-on protoplanetary disks from scattered light at IR wavelengths - Several planet		
formation theories rely on the existence of snow-line, which separates molecules of certain types in the gas phase			
from the ice phase. However, snow lines have never been observed due to instrument limitations. 2) Detectability of			
photometric variation of directly imaged rotating exoplanets due to large cloud structures or transiting/eclipsing			
exomoons - This could pave the way for studying planetary clouds and measuring their rotational period. Additionally,			
this method holds the tantalizing possibility of detecting exomoons around young, bright exo-Jupiters. Methods: We			
define inhomogeneous exoplanetary atmospheres and model their spectra at different rotational phases using the			
PICASO radiative transfer code. For the protoplanetary disk, we obtain dust temperature maps from RADMC3D and			
interface it with LIME to get the gas and ice absorption lines in the scattered light spectrum. We then consider all			
primary noise sources (photon shot, speckle, detector crosstalk, etc.) to compute the allowed error budget for			
detecting our science targets with significant confidence with SCALES.			

ASI2025_451	Bestha Manjunath	Poster	
S	un, Solar System, Exoplanets, and	Astrobiology	
Simulation of	High-Resolution Multi-Object Tra	nsmission Spectroscopy	
The atmospheric characterization of	of exoplanets has traditionally relie	d on space-based low-resolution transmission	
spectroscopy, ground-based mult	i-object low-resolution spectrosc	opy (LRTS), and high-resolution transmission	
spectroscopy (HRTS). Both low an	d high-resolution time-series obse	ervations from ground-based facilities hold the	
potential to reveal an exoplanet's a	tmospheric composition by exam	ining transit depth at different wavelength bins	
using LRTS and by analyzing resolv	ed spectral lines using HRTS. How	vever, HRTS is a double-differential technique,	
leading to normalization degenerac	leading to normalization degeneracy. This degeneracy poses a challenge in retrieval analysis, where changes in cloud		
properties can offset variations in abundance, complicating the determination of precise atmospheric parameters			
such as temperature, abundance, and cloud opacity. Mitigating this issue involves combining low-resolution			
transmission spectra with high-resolution spectra. However, performing both types of observations under different			
environmental conditions introduces additional systematics. To address this, we propose the use of multi-object			
high-resolution transmission spectroscopy (Mo-HRTS), which has not been extensively explored. In this project, we			
simulate Mo-HRTS using the existing Maroon-X spectrograph. Here, we present our findings and demonstrate the			
potential of this approach for improving atmospheric retrievals of exoplanets.			

ASI2025_63	Bhupendra Kumar Tiwari	Poster	
S	Sun, Solar System, Exoplanets, and Astrobiology		
Study of s	solar activities associated with Co	smic Ray Modulation	
Abstract Solar activities controls s	tructure of the heliosphere and co	smic ray modulation. Necessary experimental	
data to study interplanetary transp	ort of cosmic rays during transient	events at different space / time scales, based	
on the observation from Omniweb	on the observation from Omniweb data centre for Solar-interplanetary causes and yearly / monthly mean count rate		
of Cosmic Ray Intensity (CRI) varia	of Cosmic Ray Intensity (CRI) variation data from Oulu / Moscow neutron monitors . It is observed that the during		
minimum Solar activity , the strength of the IMF has been minimum and Sun is quiet , it's reduces the GCR entering			
inner-heliosphere and high anti-correlation with solar activity indices. It is also found that velocity of solar wind (Vsw)			
and turbulence and strength of the interplanetary magnetic field were positive correlated and, inverse correlated with			
count rate of cosmic ray intensity. Keywords- , Cosmic ray intensity (CRI), Interplanetary Magnetic Field (IMF), Solar			
Wind velocity (Vsw)			

ASI2025_610	Deepan Patra	Poster	
S	un, Solar System, Exoplanets, and	Astrobiology	
An Automated Trigger for Solar Rad	dio Bursts Imaging Observation usi	ng the Yamagawa spectrograph and the MWA	
Spectroscopic snapshot solar imagir	ng at radio wavelengths can yield de	etailed understanding of the emission processes	
responsible for solar radio bursts ass	sociated with massive eruptive event	s like flares and coronal mass ejections (CMEs).	
Cutting-edge radio interferometers, e	.g. Murchison Widefield Array (MWA	A), are exceptionally well-suited for this purpose.	
However, spatially resolved observat	ions of solar radio bursts from thes	e instruments remain rather limited. Despite the	
availability of exquisite imaging instrum	nents, most studies of solar radio burs	ts are still based on non-imaging observations using	
solar dedicated instruments. This is be	ecause the observing time of these ve	ersatile cutting-edge radio interferometers tends to	
be oversubscribed. This, coupled with	be oversubscribed. This, coupled with the fact that solar activity is inherently unpredictable, leads to few events of interest being		
captured in the limited solar observing time available. Enabling observations of a large number of solar radio bursts with these			
new-generation instruments requires a robust and reliable automated near-real time observing trigger. Using precious observing			
time only when some solar activity is known to have just taken place, can vastly increase the efficiency of limited available			
observing time to capture solar activity. With observatories like the Square Kilometre Array Observatory (SKAO) on the horizon,			
the need for such a system is even more imperative. We present such a system for the SKAO-low precursor, the MWA, based			
on near-real time data from the Yamagawa spectrograph which observes the Sun daily from rise to set in the band from 70 MHz			
to 9 GHz and is located at similar longitude as the MWA. We have devised, implemented and tested algorithms for this			
automated triggering system using archival Yamagawa data. End-to-end tests of triggered observations have successfully been			
carried out at the MWA. This real time triggering has now been operationalized at the MWA, a very timely development in view of			
the ongoing solar maxima.			

ASI2025_723	Devang Agnihotri	Poster	
S	Sun, Solar System, Exoplanets, and Astrobiology		
Understanding Hanle effect in Ca	Understanding Hanle effect in Ca I 4227 A line using magnetohydrodynamic simulations of the Solar atmosphere		
Scattering polarization in strong resonance lines such as the Ca I 4227 Å, formed in the chromosphere can probe the			
chromospheric magnetic fields via the Hanle effect. Predominantly one-dimensional (1D) semi-empirical model atmospheres			
were used to study the linear polarization in this line. Recently, Harsh et al. (2024) studied the resonance scattering polarization			
in Ca I 4227 Å using magnetohydrodynamic (MHD) simulations of the solar atmosphere from the Bifrost code, along a slanted			
ray with heliocentric angle µ=0.3. In this work we include the effect of weak magnetic fields (Hanle effect) on the polarization			
profiles and compare them with the non-magnetic cases.			

ASI2025_6840	Devojyoti Kansabanik	Poster
S	un, Solar System, Exoplanets, and	Astrobiology
Heliopolarimetry: A Remote Sens	ing Observing Tool to Measure Mag	gnetic Fields of Coronal Mass Ejections in the
	Heliosphere	
Magnetic field measurements in the	outer corona and inner heliosphere	using remote sensing observations are crucial for
improving space-weather prediction.	However, routine observations using	g white-light heliospheric imagers cannot provide
these measurements. At radio wavele	engths, changes in the polarization ar	ngle of background linearly polarized astronomical
sources can estimate line-of-sight (L	oS) integrated magnetic fields when	a plasma blob intercepts that LoS. To date, this
technique has been limited at coronal heights <15 R_sun using high-frequency telescopes with lower sensitivity to magnetic		
field strength and narrow fields of view (FoV), such as the JVLA. Over the past two decades, new-generation ground-based radio		
telescopes like MWA, LOFAR, ASKAP, and MeerKAT have become operational. These telescopes offer wide FoVs and lower		
observing frequencies, which can overcome previous limitations. Despite their capabilities, these instruments face challenges		
in calibration and trigger time-of-opportunity observations for space-weather events. This talk presents our recent efforts to		
address these challenges by utilizing these leading radio telescopes and preparing for upcoming new-generation radio		
telescopes (like ngVLA, SKAO) for heliospheric magnetic field measurements using radio polarimetry, a technique we call		
"Heliopolarimetry." By leveraging these advancements, along with other white-light missions (like PUNCH), we aim to enhance		
space-weather research and prediction capabilities.		

ASI2025_534	Divya Oberoi	Poster	
Sun, Solar System, Exoplanets, and Astrobiology			
	nd Heliospheric Studies with a SK		
The first phase of the Square Kilon	netre Array Observatory (SKAO) is	expected to become operational towards the	
end of this decade. The high dynam	ic range high fidelity snapshot spec	tro-polarimetric imaging the SKAO is expected	
to deliver will go a long way in realiz	zing the well recognised potential	of radio observables for solar and heliospheric	
studies. However, the Sun is the b	rightest source at SKA-Mid freque	ncies and its emission can simultaneously be	
extremely variable across the axe	extremely variable across the axes of time, frequency, brightness temperature and polarization properties. So		
observing the Sun with an instrument optimized for synthesis imaging of sources orders of magnitude fainter comes			
with a considerable set of challenges. These challenges span the domains from configuring the instrumental signal			
path such that all parts of it remain in their linear regimes, to developing robust unsupervised imaging pipelines			
necessary for spectropolarimetric snapshot imaging. While considerable work has been done, over the last decade			
or so, for preparing for observations with SKA-Low, the similar efforts for SKA-Mid, using its precursor - MeerKAT,			
have started only recently. Here we summarize the progress which has been made in enabling solar observations			
with MeerKAT, present some of the first solar images with this instrument along with some illustrative simulations			

done to build expectations for the expected imaging performance.

ASI2025_382	Goldy Ahuja	Poster
Sun, Solar System, Exoplanets, and Astrobiology		
Estimating the Nuclear Size of Long-Period Comets		

Comets, composed of volatile ice and dust, are found in the different reservoirs far from the Sun. As these bodies come close to the Sun, their volatile surfaces start sublimating, forming an atmosphere of gas and dust known as the cometary coma. The size of the visible cometary coma is of the order of 10⁴ km. The brightness of the coma presents a significant challenge in observing the nucleus. In the case of asteroids, R-band photometry has been used to estimate their radii. This technique is also beneficial for calculating the size of short-period comets when they are at a large distance from the Sun (when they do not have a well-developed coma). The long-period comets, which spend a small percentage of their orbital period time in the inner solar system, usually have a significant amount of volatiles, which can show or cause activity at distances larger than 5 AU, resulting in a coma. Hence, it is difficult to calculate the nuclear magnitude of these comets. In this poster, we will explain the various methods used for estimating the nuclear size of cometary bodies. One is to use the brightness function and extrapolate the magnitudes to a zero pixel to get the nuclear radius of a comet. Another method uses non-gravitational forces like the Yarkovsky effect, which is responsible for the non-gravitational acceleration. This non-gravitational acceleration is related to the radius of the comet. We applied these methods to get the radius of four long-period comets, i.e., C/2020 V2, C/2019 L3, C/2022 E3 and C/2023 A3. These long-period comets were observed from the Faint Object Camera (FOC) instrument mounted on the 2.5 m PRL telescope and the HFOSC instrument mounted on the 2 m Himalayan Chandra Telescope (HCT).

ASI2025_177	Karan Sahu	Poster	
Sun, Solar System, Exoplanets, and Astrobiology			
Solar coronal origin of solar wind p	periodic proton number density str	uctures using PSP and STEREO Observations	
Observation of solar wind at 1 AU re	eveals discrete variations in its pro	ton number density that occur periodically and	
more frequently at particular tempo	oral or radial length scales, re- ferr	ed to as periodic density structures (PDS). The	
PDS originate locally in the interpla	anetary medium near 1 AU by diffe	rent dynamic processes, or they can originate	
in the solar corona and be convec	ted outward to 1 AU. Earlier studi	es utilizing in-situ measurements of the solar	
wind at 1 AU found PDS to be ass	ociated more often with slow (und	disturbed) solar wind(speed < 500 km/s) than	
fast. In combination with remote ir	naging solar corona observations,	PDS is suggested to have originated from the	
Corona. Here, we conducted a cas	se study of four PDS events to inv	estigate the origin of PDS associated with the	
slow solar wind, observed at L1 by	Wind spacecraft between 2019-2	023 when near-Sun Parker's Solar Probe (PSP)	
observations were available and en	observations were available and encountered the same slow solar wind stream as Earth. The slow solar wind is less		
turbulent, and the plasma density parcels remain unchanged with the radial distance dur- ing their transit to 1 AU.			
Thus, when analyzed using the PSP observations and cross-correlated with the near-Earth PDS, the corresponding			
PDS near the Sun showed a strong correlation. Us- ing a Fourier spectral analysis, common periodicities of a few			
minutes were found in solar wind proton densities measured by PSP (near-Sun) and Wind (near-Earth). Further, with			
the remote imaging observations of the PDS from STEREO-A, we confirmed that the events originated in the solar			
corona, then frozen in the solar wind, and finally convected out to 1 AU.			

ASI2025_397	Lokesh Manickavasaham	Poster	
Sun, Solar System, Exoplanets, and Astrobiology			
Addressing Wavelength-Correlated	d Systematics in Exoplanet Transn	nission Spectroscopy: A 2D Gaussian Process	
	Approach		
Ground-based transmission spect	roscopy is often dominated by sy	stematics, obstructing us from leveraging the	
advantages of larger aperture size	es compared to space-based obs	servations. These systematics could be time-	
correlated, uniform across all spec	troscopic light curves, or wavelen	gth-correlated, which could significantly affect	
the characterization of exoplanet	atmospheres. Gaussian Proces	sses (GPs) were introduced in transmission	
spectroscopy by Gibson et al. (201)	2) to model correlated systematic	s in a non-parametric way. The technique uses	
auxiliary information about the obs	ervation and independently fits ea	ch spectroscopic light curve to provide robust	
atmospheric retrievals. However,	this method assumes that the ur	ncertainties in the transmission spectrum are	
uncorrelated in wavelength, which	can cause discrepancies and degr	ade the precision of atmospheric retrievals. To	
address this limitation, we explore a	address this limitation, we explore a 2D GP framework to model both time- and wavelength-correlated systematics.		
By combining the spectroscopic lig	ht curves to create a 2D grid, the G	GP simultaneously fits for the transit depth with	
the hyperparameters shared across wavelengths. While this method is computationally intensive, it recovers the full			
covariance matrix of the transmission spectrum and improves the accuracy of atmospheric retrievals. It can			
potentially eliminate the need for 'common-mode' correction, which produces an offset in the transmission			
spectrum. We present the detailed framework and its application to ground-based observations, including those			
obtained from the 2m Himalayan Chandra Telescope (HCT). As we move towards detecting smaller and cooler			
planets, developing new methods t	o address complex systematics b	ecomes increasingly essential.	

ASI2025_282	Madhu Kashyap Jagadeesh	Poster
Sun, Solar System, Exoplanets, and Astrobiology		
(Re)-Defining Planets the Fundamental Planet Plane		

More than 5500+ planets are detected using various techniques, with expectations of billions in our Galaxy alone. They are called super-earths, hot earths, mini-neptunes, hot neptunes, sub-neptunes, saturns, jupiters, hot jupiters, jovians, gas giants, ice giants, rocky, terran, subterran, superterran, ... This prompted many recent works on taxonomy, or classification, of exoplanets. However, there is no basic, fundamental definition of `What is a planet?', opposing to stars/asteroids/moons. Additionally, IAU 3rd law of planets states that a planet has to clear the neighbourhood around its orbit, which is still very difficult to determine even for closest exoplanets. The first ambitious task here is to establish if there is a limit on the size/mass of a planet. The lower mass limit may be assumed as of Mimas (0.03 EU) - ~min mass required to attain a nearly spherical hydrostatic equilibrium shape, following IAU 2nd law of planets. But the smallest exoplanet Kepler-37b is only 0.01 EU. The upper mass limit may be easier - there is a natural lower limit to what constitutes a star: ~0.08 SU. But then there are brown dwarfs: IAU has defined brown dwarfs as objects that exceed the deuterium burning limit (~13 JU), and giant exoplanets generally have masses of ~0.3 to ~60 JU. The resolution requires assembling the basic physical parameters that define planets quantitatively. Mass and radius are two fundamental properties and we propose a third correlated parameter: the moment of inertia. Based on these, we create the fundamental planet plane where, just like a galactic plane, the two parameters are correlated with the third. We propose to add the lower limit by plotting the moment of inertia versus log mass, where we are looking for a threshold or a turn-off point to define a planet. A fundamental planet plane will demonstrate the upper limit.

ASI2025_576	Mangesh Daspute	Poster	
S	Sun, Solar System, Exoplanets, and Astrobiology		
Machine Scientist for	Understanding and Mitigating Stell	ar Activity in Exoplanet Detection	
Stellar activity produces noise in ra	dial velocity data, which hinders E	arth-mass exoplanet detection. Radial velocity	
jitter is a complex nonlinear comb	ination of effects of stellar spots	, faculae, p-mode oscillation, and granulation	
which also works on different timescales. We use a data-driven approach to determine the effect of stellar activity			
on radial velocity. We used the normalised flux of multiple absorption lines from HARPS-N solar spectra as input			
and radial velocity in a heliocentric rest frame as output for the machine learning model. To model stellar activity, we			
used a Bayesian Machine Scientist. It finds the simplest best fitting equation that relates properties of absorption			
lines and activity induced radial velocity. By predicting and subtracting the effect of stellar activity on radial velocity			
we were able to reduce the standard deviation in the noise in the data to 1.2 m/s and 1.6 m/s of effect was modelled			
out.			

ASI2025_544	Mayank Rajput	Poster	
S	Sun, Solar System, Exoplanets, and Astrobiology		
Metric Type II Radio Emission asso	ciated with Coronal Mass Ejection	s of Large Angular Widths: Some New Insights	
Coronal Mass Ejection (CME) driven s	hocks can accelerate charged particle	es up to relativistic speeds, producing Type II solar	
radio bursts. The CME directly impacts	s Earth, so studying them becomes in	nportant from a space weather perspective. Due to	
the association of Type II bursts with C	ME, it is important to study them and t	the correlation of different properties of Type II with	
that of the CME. This study analyzed	a correlation between the frequency	bandwidth of Type II radio bursts in the frequency	
range 127–20 MHz, obtained from an o	e-CALLISTO spectrograph, and the ar	ngular width of the associated CMEs. To obtain the	
true angular width of the CMEs, we use	ed a forward-fitting model known as th	ne Graduated Cylindrical Shell model. The dynamic	
spectrum obtained from e-CALLISTO	was used to calculate the frequency	bandwidth of the Type II bursts. Our investigation	
found that the frequency bandwidth o	f Type II bursts is anti-correlated with	n the angular width of the associated CMEs with a	
correlation coefficient of ~74%, indica	correlation coefficient of ~74%, indicating that the CMEs with large angular width can produce narrow-band Type II emissions.		
This starkly contrasts a recent report that the CMEs with large angular widths produce broad-band Type II emission. To locate			
the Type II radio burst to CME-driven	the Type II radio burst to CME-driven shock front, we further estimated the Type II burst height at the burst-onset time and		
compared it with the deduced height of the associated CMEs/shocks. For all of the Type II burst events, it was found that the			
height of the Type II burst was less than the CME height, indicating that the Type II emissions are produced in the flank region of			
the CME-driven shock. This suggests there could be narrow-band Type II emission as the condition for generating Type II bursts			
satisfies in a narrower region in the flank of the CMEs.			

ASI2025_215	Pooja Devi	Poster	
S	Sun, Solar System, Exoplanets, and Astrobiology		
Eruption of a	Eruption of a quiescent filament and associated EUV loop contraction		
Solar filaments are cool and dense plasma material suspended in the solar corona against gravity. Their eruptions are crucial			
from the space weather point-of-view. Here, we present observations of a quiescent filament eruption that occurred on 13 July			
2015. The eruption was associated with a clear two-ribbon GOES B7 class flare. The successful eruption produced a CME with			
a speed of ~ 552 km s-1 and a deceleration of ~ 14 m s-2. To understand the origin of the filament eruption, we have computed			
the magnetic flux at different locations near the filament and conclude that magnetic flux cancellation could be the cause of this			
eruption. During the eruption, the nearby EUV loops contract, which is explained in light of existing theories and simulations.			

ASI2025_691	Pritam Das	Poster	
S	Sun, Solar System, Exoplanets, and Astrobiology		
Kinematics of CMEs in the Middle Corona			
The middle corona, spanning from 1.5 to 6 solar radii from the solar disk centre, is a critical transition zone between the inner			
and outer corona, bridging two distinct physical regimes. Though its boundaries have been debated for years, recent community			
efforts (West, M.J. et al., 2023) have established this standard definition. This region is known for hosting some of the most			
dynamic solar phenomena, particularly Coronal Mass Ejections (CMEs), whose impulsive acceleration often occurs within the			
middle corona. Despite its significance, this region has been understudied due to observational challenges faced by major solar			

middle corona. Despite its significance, this region has been understudied due to observational challenges faced by major solar missions. In our study, we leverage data from SUVI-ECI (GOES-R), Kcor (MLSO), and LASCO (SOHO). The off-pointing campaign of SUVI-ECI provides EUV observations up to 5 solar radii, offering valuable overlap with Kcor and LASCO in white light. Our results reveal distinct kinematic profiles of CMEs in EUV versus white light, underscoring the different dynamics across wavelengths. Additionally, we employ a state-of-the-art optical flow technique to analyze the velocity profiles across different CME locations. This method generates a heat map of velocity magnitudes and overlays flow vectors directly onto the CME images, providing a detailed view of the dynamics within the middle corona. We plan to enhance this approach with a machine learning model, which will ultimately serve as a robust tool for automated CME detection—advancing real-time monitoring capabilities for eruptive solar phenomena.

ASI2025_346	Rahul Bandyopadhyay	Poster
Sun, Solar System, Exoplanets, and Astrobiology		
Polycyclic aromatic hydrocarbon abundances in T Chamaeleontis		

We investigate the protoplanetary disk around the T Tauri star T Chamaeleontis (T Cha). A significant amount of "seesaw" variability, i.e., relative decrease and increase of the fluxes short-ward and long-ward of 10 microns, respectively, is observed by comparing the mid-IR spectra of T Cha taken using Spitzer-IRS and JWST-MIRI-MRS. Multiple polycyclic aromatic hydrocarbon (PAH) bands around 6.2, 7.7-8.6, 11.3-12.7 microns can be prominently observed in the JWST spectrum compared to a faint 11.3-micron band in the Spitzer spectrum. We perform radiative transfer modelling to reproduce the mid-IR JWST spectrum and the photometric fluxes ranging from optical to farinfrared. We re-establish the geometric structure of the disk - an inner and an outer disk separated by a gap - as inferred from earlier Spitzer, VLT, and ALMA observations. We find that the reduction of the inner disk mass and scale height results in an increase of the outer disk irradiation and therefore, the increase in the outer disk emission, including the PAH bands, which supports the earlier explanation of "see-saw" variability observed in disks. We provide a new estimation of the PAH abundances in the disk of T Cha by fitting the PAH bands fluxes in a selfconsistent way from the disk model. We put strong constraints on the PAH abundances by exploring a large range of physical conditions and structural parameters of both the inner and outer disk. We estimate a higher flaring index than the earlier models, which might result from the enhancement in the PAH emission and hence, increased gas heating than during the time of Spitzer observations. Our estimated PAH abundance also implies that the disk of T Cha might be undergoing FUV photoevaporation driven by its central star, providing possible constraints on the planet-formation time scale around T Cha.

ASI2025_291	Raj Kumar	Poster	
Sun, Solar System, Exoplanets, and Astrobiology			
Study of Solar Energetic Part	cles, their Source Regions and As	sociated CMEs during Solar Cycle 23-24	
We present here a study of assoc	ciation of solar active regions wit	h 152 solar energetic particle events (SEPs),	
Coronal mass ejections (CMEs) ar	nd solar flares for the solar cycles	(SCs) 23-24 (1997 - 2017). For our study, we	
have used the GOES data available	e online at Coordinated Data Anal	ysis Workshops (CDAW) center in the energy	
channel > 10 MeV having flux \ge 10 p	ofu. For the associated activities, w	ve have analyzed the data from SOHO/LASCO.	
We found a moderate correlation (We found a moderate correlation (55%) between SXR flux and sunspot area. A weak correlation (46%) was found		
between SEP intensity and SXR flu	between SEP intensity and SXR flux and correlation of SEP intensity with different classes of SXR flares was found		
to be increased from weak (C-clas	s) to strong (X-class) flares. 80%	of the SEP events are originated from western	
hemisphere and 20% from eastern hemisphere. We found that most of the SEPs are originated from the magnetically			
complex active regions i.e., hale class $\beta\gamma\delta$ and β . Very few events were associated with unipolar active regions. We			
found that maximum average SEP intensity (2051 pfu) was found corresponding to active region $\beta\gamma\delta$. In the data set			
used, we found only 10% SEPs impulsive in nature, while the remaining 90% are gradual in nature. All the impulsive			
SEP events were originated from western hemisphere. All the impulsive events had SEP intensity less than 100 pfu			
and most of the CMEs associated with these events were decelerated CMEs.			

ASI2025_217	Ramesh Chandra	Poster	
S	Sun, Solar System, Exoplanets, and Astrobiology		
	Filament Eruption and EUV Loop Dynamics		
Here, we present the observations of f	ilament eruption and the nearby loop	dynamics of of 16 March 2013 in active region (AR)	
NOAA 11690. The event was observed by the Solar Dynamics Observatory and Solar Terrestrial Relations Observatory. The			
erupting filament height is fitted with the sum of a linear and exponential function. These two phases evidence the tether-cutting			
reconnection as well as magnetic instability. Close to the erupting filament, a stable filament remains in the core of the AR. The			
EUV loops, located above the nearly joining ends of the two filaments, first contract in phase, then expand and reach a new			
stable configuration. These observations cannot be explained by the models that interpreted contraction within a bipolar			
magnetic configuration. New simulations are required to broaden the complexity of the configurations studied.			

ASI2025_636	Rohan Bose	Poster
S	un, Solar System, Exoplanets, and	Astrobiology
Morphological Study of Polar Coronal hole Jets		
Solar jets are transient events ubiquitous across the solar atmosphere. They are thought to play a crucial role in coronal heating		
and in the transfer of mass and energy through different atmospheric layers, including into the solar wind. Small-scale jets are		
generally classified into two types: (i) Standard jets, characterized by inverted Y-shaped structures, and (ii) Blow-out jets, which		
have broader spires and are often linked to mini-filament eruptions. In this work, we analyzed standard polar coronal hole jets		
using high-resolution data from the High Resolution Imager (HRI) onboard Solar Orbiter (SoLO). Our observations revealed a		

filament-like structure interacting with a jet, and we tracked the evolution of the jet and the filament material. The jets were also visible in the cooler temperature channels of the Atmospheric Imaging Assembly (AIA) and the Interface Region Imaging Spectrograph (IRIS), indicating the presence of both cooler and hotter plasma. The jets' energy is in the nanoflare range, typically associated with jets reaching heights of up to 5-10 Mm, but in this case, the jets extended up to 30 Mm above the limb. Additionally, we have analyzed the base of the jets to look for propagating blobs contributing to the dynamics of the jet.

ASI2025_161	Sabarinath M D	Poster	
S	un, Solar System, Exoplanets, and	Astrobiology	
Minor E	lement Mapping On Lunar Surface	e using CLASS Data	
Minor element analysis of the lunar sur	face provides crucial insights into the	Moon's geological history and formation processes.	
Transition elements like Mn, Cr, and V	are important in this study because the	neir properties can indicate the presence of distinct	
lunar rock types and thermal history. W	/e use lunar X-ray data from Chandray	yaan-2 Large Area Soft X-ray Spectrometer (CLASS)	
to map the minor elements on the lur	nar surface. The primary focus is on a	detecting minor elements such as Chromium (Cr),	
Manganese (Mn), and Vanadium (V) th	rough X-ray fluorescence (XRF) spect	roscopy. A novel approach applying peak detection	
and spectral modelling was applied to	o detect signatures of these elements	s in CLASS spectra during strong flares. To ensure	
accurate element identification, a sol	ar flare-based ultra-filtration mecha	nism was employed. This mechanism filtered out	
regions which had very distinct peaks	s of minor elements in the XRF line s	pectra. Then the Gaussian fitting algorithms were	
applied to extract peak parameters such as width and centre, from smoothed spectral data. These peaks corresponded to			
characteristic X-ray energies emitted b	characteristic X-ray energies emitted by the targeted elements. The intensity of these elements was normalised against Silicon,		
which is uniformly distributed across the lunar surface. This normalisation allowed for the accurate mapping of element			
distribution while minimising geometric effects caused by variations in the solar zenith angle. We have generated spatial maps			
of Cr, Mn, and V across the lunar surface. The maps suggest a higher abundance of the detected minor elements in the lunar			
highlands and polar regions. These maps are first of its kind and could potentially provide new insights into the minor element			
composition of the lunar surface, and	offer valuable contributions to the field	d of lunar geochemistry.	

ASI2025_349	Sankalp Srivastava	Poster	
S	un, Solar System, Exoplanets, and	Astrobiology	
The relation b	etween solar spicules and magne	to-hydrodynamic shocks	
Spicules are thin, elongated jet-li	ke features ubiquitously seen sh	nooting upwards in observations of the solar	
atmosphere, appearing to protrude	e into the corona before (mostly) fa	alling back to the solar surface. These features	
exhibit highly complex dynamics du	uring their short lifetimes of 5-10 m	ninutes and seem to be a necessary connecting	
link between the cooler, denser sol	ar chromosphere and the extreme	ly hot, tenuous corona. In this work, we explore	
the spatial and temporal relation be	etween solar spicules and magneto	o-hydrodynamic (MHD) shocks using data from	
a 2D radiative MHD (rMHD) simula	tion of the solar atmosphere drive	n by realistic solar convection that was earlier	
reported by Dey et al. 2022. This m	reported by Dey et al. 2022. This model was able to self-consistently excite a forest of spicules with heights in the		
range of 6–25 Mm and speeds in the range 30–80 km/s, in agreement with observations. In this work, we demonstrate			
that slow MHD shocks, which p	propagate along magnetic field l	ines, are regions of strong positive vertical	
acceleration of the plasma that forms the tip of the spicule material during its rise phase. We further show that the			
strength of these shocks may play a vital role in determining the heights of the spicules, supporting the idea that			
shocks act as drivers of spicules. In addition, we report some results on the presence of structures similar to			
propagating coronal disturbances (PCDs) in the simulation, linked with the spicules.			

83

space weather events.

ASI2025_142	Saurabh Tripathi	Poster	
S	un, Solar System, Exoplanets, and	Astrobiology	
Investigation of S	ource Regions of Geo-effective Co	ronal Mass Ejections (CMEs)	
This study investigates the origins,	characteristics, and impacts of Ge	o-effective Coronal Mass Ejections (CMEs) on	
Earth's space environment during s	solar cycle 24 th (2009-2019), with	a focus on their contribution to space weather	
phenomena. Specifically, we exa	amine Interplanetary Coronal Ma	ass Ejections (ICMEs) detected at the first	
Lagrangian point (L1), analyzing key	y features such as enhanced magn	etic field strength, magnetic field rotation, and	
reduced proton temperatures,Plas	reduced proton temperatures, Plasma- β ratio particularly within Magnetic Clouds. Our work emphasizes CMEs that		
triggered significant Geomagnetic disturbances, identifying their heliospheric distribution and solar source regions.			
Using data from Large Angle and	Using data from Large Angle and Spectrometric Coronagraph (LASCO), Solar Dynamics Observatory (SDO),		
Advanced Composition Explorer (ACE), Geostationary Operational Environmental Satellites (GOES), and catalogs			
such as Cane and Richardson's IC	ME list, CDAW, ARIES, and the HE	SSI Flare Catalog, we trace the Solar origins of	
these ICMEs through the Graduated Cylindrical Shell (GCS) model and Jhelioviewer software. This research also			
investigates the characteristics of solar flares associated with Geo-effective CMEs, offering insights into the link			
between solar activity and space weather. By analyzing the variation in major Geo-effective CMEs over the solar			
cycle, our findings enhance the unc	lerstanding of solar-terrestrial inter	ractions and improve predictive capabilities for	

ASI2025_347	SOUMIK KAR	Poster
Sun, Solar System, Exoplanets, and Astrobiology		
Simulating Temperature and Spectral Energy distributions in Protoplanetary Disks		
A protoplanetary disk is a rotating circumstellar disk composed of dense gas and dust surrounding a young star. The		

study of protoplanetary disk structure and composition is crucial to understanding the processes of planet formation. Over the years, several models have been proposed to describe the chemical and hydrodynamical processes in these disks. In this work, we introduce a radiative transfer model designed to characterize the distribution of temperature and spectral energy throughout a disk. Our approach presents an efficient method for achieving radiative equilibrium in Monte Carlo Radiative Transfer (MCRT) simulations, specifically for systems with temperature-independent opacities, such as dusty astrophysical environments. This approach utilizes the MCRT's capacity to track individual photon packets, allowing precise determination of energy absorption sites and subsequent adjustment of the local cell temperature. To maintain radiative equilibrium, each absorbed packet is immediately re-emitted, with its frequency selected to correct the cell's thermal spectrum. The re-emitted packets continue to undergo scattering, absorption, and re-emission until they escape, enabling the system's temperature and spectral energy distribution (SED) to reach equilibrium without iteration. This process conserves energy exactly, eliminates convergence issues, and requires no additional computation time compared to pure scattering models. We present initial results toward a comprehensive understanding of temperature and SED distributions in protoplanetary disks.

ASI2025_240	SOUMYARANJAN KHUNTIA	Poster	
Sun, Solar System, Exoplanets, and Astrobiology			
Investigating the Thermodynamics	of CMEs and Insights From the Su	ccessive CMEs Driving the 11 May 2024 Great	
	Geomagnetic Storm		
Coronal mass ejections (CMEs) are	e gigantic expulsions of magnetize	ed plasma from the Sun that significantly drive	
the space weather. While previous	research has primarily focused or	n the kinematics of CMEs, more exploration of	
their thermodynamic evolution r	needs to be done. Our study	presents a comprehensive analysis of the	
thermodynamic evolution of multip	ole fast and slow CMEs, including a	a detailed case study of the great geomagnetic	
storm on 11 May 2024. We have	implemented the Flux Rope Inte	rnal State (FRIS) model to analyze distance-	
dependent variations in the polyt	ropic index, heating rate, temper	rature, and internal forces of CMEs. The 3D	
kinematic data used as input for th	e FRIS model is derived from the	Graduated Cylindrical Shell (GCS) model. Our	
findings indicate that fast CMEs re	lease heat during their early stage	s of rapid deceleration and absorb heat during	
their near-constant acceleration phase. Slow CMEs, on contrast, exhibit mixed thermodynamic profilessome			
undergoing heat absorption through	hout their observed heights, while	others display thermal behavior similar to fast	
CMEs. Our analysis reveals that although various CMEs show differential heating, they experience heat absorption			
at later propagation heights, approaching the near-isothermal state. Notably, CMEs with higher expansion speeds			
	exhibit a less pronounced initial temperature drop before getting an isothermal state. Furthermore, the estimated 3D		
kinematics of responsible interplanetary CMEs (ICMEs) for the great 11 May 2024 storm case study suggest their			
en-route interaction, further confirmed by using in-situ measurements at 1 AU. Interestingly, for the case study, we			
note that electrons exhibit distinct thermal behaviors for pre and post-ICME (heat absorption) compared to those			
within the ICME (heat release), and ions show a bimodal thermal distribution inside the ICME. Our study highlights			
the importance of successive interacting CMEs towards the storm's severity and the need to understand their			
thermodynamic evolution better.			

ASI2025_35	Souvik Das	Poster
Sun, Solar System, Exoplanets, and Astrobiology		

Analytic investigation of collective fluctuation dynamics in nonthermal solar plasmas

A rich variety of waves and oscillations are ubiquitously found in the entire solar plasma spatiotemporal regime. The non-radial longitudinal helioseismic modes are one kind of these waves providing solid diagnostic tools to probe the solar interior. A local spherical (non-planar) linear perturbation analysis on the kappa-modified viscoturbulent nonthermal solar plasmas is herein methodically carried out. It yields a unique linear cubic dispersion relation for the self-gravitationally bounded solar plasma system. The multi-parametric dispersion signatures sensitively depend on the electron nonthermality, electronic temperature, fluid dynamic viscosity, thermal conductivity, and geometrical curvature effects. Diverse modal features of the helioseismic gravity mode (g-mode) and acoustic mode (p-mode) are analytically explored. The low-frequency g-mode dominates only in the deeper constituent concentric layers of the Sun. The high-frequency p-mode propagates throughout the Sun up to its surface. The existence of the solar fiveminute oscillation is theoretically confirmed. The electron nonthermality spectral index, plasma temperature, and thermal conductivity serve as modal velocity accelerating agents. The dynamic viscosity plays the role of a decelerating one. The radially outward photospheric p-mode energy flux density is estimated analytically as 1-100 kW per unit area. Sufficient leakage of this longitudinal p-mode energy flux contributes significantly to the chromospheric transverse spicule oscillation formation through mode conversion processes. From several observational data, the spicule oscillation energy is obtained as 10 kW per unit area. The proposed analysis justifiably and reliably corroborates with numerous solar observational and theoretical modal signatures existing in the literature.

ASI2025_720	Susanta Kumar Bisoi	Poster	
S	Sun, Solar System, Exoplanets, and Astrobiology		
Inner-heliospheric signatures	s of steadily declining solar magne	tic fields and their possible implications	
We have examined solar photosph	neric magnetic fields for the solar	cycles 21-25, covering the period 1975-2024.	
The unsigned photospheric magne	etic fields at low latitudes (0-45 d	degrees), known as solar toroidal fields, have	
shown a solar cycle variation, with	the field strength being stronger d	uring the maximum of cycle 25 than during the	
maximum of cycle 24. However, th	e unsigned field strength of photos	spheric magnetic fields at high latitudes (45-78	
degrees), known as solar polar field	s, has shown a significant steady d	lecline since the mid-1990s. The unsigned field	
strength of solar polar fields, after a	an increase during 2015-2020, dec	lined again until 2024, continuing the declining	
trend for a long 30 years. Also, we h	ave examined the solar wind micro	turbulence levels in the inner heliosphere (0.2-	
0.8 AU), using interplanetary scintil	lation observations at 327 MHz, co	overing the period 1983-2022, that has steadily	
declined since the mid-1990s and	continued until 2022, synchronou	usly with the solar polar fields. We have found	
that the floor level in both solar tore	that the floor level in both solar toroidal fields and solar wind magnetic fields has been reduced during the minimum		
of cycle 23 and recovered back during the minimum of cycle 24. In addition, a hemispherically asymmetric solar			
polar reversal was evident in the signed (axial) solar polar fields during cycles 21-25, with the reversal in cycle 25 for			
the northern hemisphere already completed. Still, the same for the southern hemisphere is yet to be completed. We			
discuss the implications of such a long declining trend and other anomalies in solar cycle activities during the solar			
cycles 21-25.			

ASI2025_421	Sushmita Deb	Poster
S	un, Solar System, Exoplanets, and	Astrobiology
Explori	ng the structural composition of ha	abitable exoplanets
Examining habitability and interior composition of exoplanets is a key subject for exploring the life sustaining		
possibility of the extrasolar worlds. Characterizing the planetary structure and atmospheric evolution provides		
insights regarding the surface condition and long term habitability of these planets. In this study, we conducted a		
comprehensive analysis of exoplanets in the mass and radius range of $Rp \le 4R \oplus$ and $Mp \le 15M \oplus$ and confirmed 15		
of them lying within the extended habitable zone boundaries. We provide the stellar parameter analysis of the host		

stars and giving a constrained estimation of the stellar physical properties. We employed the MIST isochrones along with the estimated stellar parameters to determine the age of these systems. We also performed the interior structure modeling of the planets to infer their possible composition and structure, constraining the mass fractions of all the four layers: iron core, silicate mantle, water or ice layerand atmosphere. Our model analysis confirms iron-rock core composition for LHS 1140b and TOI 1452b, whereas supports a water rich composition for TOI-1266c, LTT-3780c, LP 791-18c and K2-18b. Futhermore, assuming the exoplanets capable of accreting a gaseous layer, we modelled the initial envelope fraction of the habitable exoplanets to examine their ability to sustain a stable atmosphere over time. The results, obtained from our analysis, provides new insights into the structural and atmospheric properties of the exoplanets lyingwithin the habitable boundaries of their systems.

ASI2025_160	Tisyagupta Pyne	Poster
S	un, Solar System, Exoplanets, and	Astrobiology
The 10 pc Neighborhood of Habita	able Zone Exoplanetary Systems: 1	Threat Assessment from Stellar Encounters &
	Supernovae	
The habitability of a planet is influe	nced by both its parent star and t	he properties of its local stellar neighborhood.
Potential threats to habitability from	n the local stellar environment ma	inly arise from two factors: cataclysmic events
such as powerful stellar explosions	and orbital perturbations induced	by close stellar encounters. Among the 4,500+
exoplanet-hosting stars, about 140)+ are known to host planets in th	eir habitable zones. In this study, we use Gaia
DR3 data to investigate the 10 pc stellar neighborhood of the 84 habitable zone systems (HZS) closest to the Sun.		
We assess the possible risks that local stellar environment of these HZS pose to their habitability. In particular, we		
find that HD 165155 has a high stellar density around it, making it likely to experience at least one flyby encounter		
within a span of 5 Gyr. We also identified two high-mass stars (M \ge 8M \odot) as potential progenitors of supernovae,		
which could threaten the long-ter	m survivability of habitable zone s	systems HD 48265 and TOI-1227. Further, to
quantify the similarity between habitable zone stars and the Sun, as well as their respective 10 pc stellar		
environments, we employ various astrophysical parameters to define a Solar Similarity Index (SSI) and a		
Neighborhood Similarity Index (NSI). Our analysis suggests that HD 40307 exhibits the closest resemblance to the		
solar system, while HD 165155 shows the least resemblance.		

ASI2025_278	Trinesh Sana	Poster
Sun, Solar System, Exoplanets, and Astrobiology		
Effect of Solar Activity on The Lunar Plasma Environment		

The Sun greatly influences the plasma environment around the Moon. Without any significant atmosphere and global magnetic field, the Moon's surface is directly exposed to the solar wind and/or magnetospheric plasma and solar photons. Under exposure to dominant solar radiation, the sunlit lunar surface (and floating dust) generally acquires a positive charge and generates photoelectrons. The emitted photoelectrons and floating charged dust form a dusty photoelectron sheath in the vicinity of the lunar surface, which is a major component of the lunar dusty plasma environment. In contrast, plasma electrons typically predominate on the night side, and the surface acquires a negative charge and forms a classical plasma sheath. The complex electric potential/ field structures and dust dynamics within the lunar photoelectron sheath significantly depend on the solar vacuum ultraviolet (VUV; < 200 nm) radiation. The solar activity is highly variable in the range of 70–100 nm. Since the photoemission efficiency (quantum yield) of the lunar surface peaks in this range, the photoemission current and subsequent sheath characteristics significantly vary with solar activity. Here, we present a quantitative estimate of lunar photoelectron sheath characteristics using the high-resolution solar UV spectrum for different solar activity measured at 1 AU from the Flare Irradiance Spectral Model 2 (FISM2) and lunar photoelectron yield measured from sample return by the Apollo missions. This data will be used as the input parameters for a comprehensive photoelectron sheath model to derive the electric potential/field and population density profiles of the sheath constituents. The results demonstrate that under extreme solar flare conditions, the photoemission current increases significantly, which results in stronger potential and electric fields in the vicinity of the lunar surface. As a result, in extreme solar flare conditions, the electrostatic mobilization of lunar dust is anticipated to increase significantly.

ASI2025_456	Varghese Reji	Poster	
Sun, Solar System, Exoplanets, and Astrobiology			
	· · · · · ·	ellar activity from exoplanet signal	
		or discovering habitable planets and estimating	
		w cm/s, however, that hasn't translated to the	
discovery of earth-like planets aro	und sun-like stars. Below a few r	n/s, the Doppler shift of spectral lines due to	
stellar activity will start dominating	planetary signals. Stellar activity s	ignals are spurious Doppler shifts measured in	
the spectrum of a star due to any c	hanges in the fluid flows of the ph	otosphere. The formation of active regions and	
star spots, or the suppression of t	he convection flow, causes spuri	ous disc-averaged radial velocity shifts in the	
order of m/sec. Disentangling this	signal from Doppler shifts due to	a planet is the central problem in the planet	
discovery field. Since the spurious r	discovery field. Since the spurious radial velocity shifts are driven by the changes in the average flow velocities in the		
stellar photosphere, we expect to	see signatures of this in the radia	l velocity measured at different heights of the	
stellar atmosphere. A planetary radial velocity signal should be consistent across all the heights, while a stellar			
activity-induced photospheric velo	city, could be different at different	heights of the atmosphere. Based on this idea,	
we are developing a method to disentangle stellar activity signals and planetary signals in radial velocity data. We			
first model the spectra generated from various depths of the photosphere, then calculate the radial velocity			
associated with that. We will use the NEID solar data to fit our models and test the ability of the algorithm to			
disentangle the photospheric velocities from the planetary signal. Here I shall present our model and the progress			
so far.			

ASI2025_98	Vinod Chandra Pathak	Poster	
S	Sun, Solar System, Exoplanets, and Astrobiology		
Characterizing Molecu	lar Winds from Protoplanetary Dis	sks: New Perspectives from JWST	
Understanding the physical process	ses, such as outflows (winds, jets)	and the accretion of dust and gas around newly	
born stars, and their successive e	volutionary stages, is essential fo	r advancing our knowledge of star and planet	
formation. We have investigated the	ne role of molecular disk winds in	the evolution and dispersal of protoplanetary	
disks, in low-mass (M* = 0.5 – 1 M	\odot) young stars in the nearby star-	forming regions with the JWST. Pure-rotational	
molecular hydrogen lines in the m	id-infrared wavelength range (5-2	28 microns) serve as valuable probes for disk	
winds. We analyzed publicly availa	ble data from 72 protoplanetary di	sks obtained from various Cycle 1 GO and GTO	
programs of JWST MIRI MRS to ch	aracterize outflows in protoplane	tary disks. For the first time, we are detecting	
extended pure-rotational H_2 lines	due to the high spectral resolu	ution and sensitivity of the JWST MIRI MRS	
instrument. Molecular H_2 emission	n was detected in 46 out of the 72	2 disks, with 17 exhibiting extended emission	
indicative of outflowing material. Fo	or the remaining disks, the emission	n arises from the unresolved inner disk regions.	
We have carried out a detailed stu	We have carried out a detailed study of the outflow morphologies, and velocity distributions, and have measured		
dynamical timescales, mass-loss r	ates, momentum rates, and mecha	anical luminosities of the molecular winds from	
these protoplanetary disks. Additi	onally, we have characterized th	e physical conditions of the emitting H_2 gas,	
including its temperature, density, total disk wind mass, and the ortho-para ratio. Our preliminary analysis suggests			
that the mass-loss rates and momentum rates for these molecular disk winds are to those observed for protostars			
in the earliest evolutionary phases. The unprecedented sensitivity and spectral resolution of JWST MIRI MRS reveal			
detailed kinematics and dynamics of disk winds, uncovering new aspects of disk evolution and planet-formation by			
detecting extended H_2 emission in	17 disks.		

Posters in Stars, Interstellar Medium, and Astrochemistry in Milky Way

ASI2025_570	Aardra S	Poster
Stars, Interstellar Medium, and Astrochemistry in Milky Way		
Gas Kinematic Inves	stigation of Cometary Globule - LBI	N 437 using TRAO Observations
Bright-rimmed, cometary-shaped	star-forming globules, associated	with HII regions, are remnants of compressed
molecular shells exposed to ultrav	iolet radiation from central OB-type	e stars. The interplay between dense molecular
gas and ionizing radiation, analyzed	d through gas kinematics, provides	insights into the nature and dynamic evolution
of these globules. We present the k	inematic study of the cometary glo	bule, Lynd's Bright Nebula (LBN) 437, focusing
on the first rotational transition of t	he 12CO and C18O molecular line	s, observed using the Taeduk Radio Astronomy
Observatory (TRAO). The kinemat	ic information retrieved from the s	pectral-line maps traces the gas dynamics in
LBN 437. The averaged 12CO spe	ctrum shows a slightly skewed pro	file, suggesting the possibility of a contracting
cloud. The molecular line profiles	reveal signatures of infalling gas in	the cometary head of LBN 437, indicating the
initial stages of star formation. We	also estimate the infall velocity ar	nd mass infall rate towards the cometary head
of LBN 437. The estimated mass infall rate aligns well with the previous studies on intermediate or high-mass star		
formation, indicating that the cometary head of LBN 437 is a potential site for high-mass star formation.		
ASI2025_598	Advik Gupta	Poster
Stars, Interstellar Medium, and Astrochemistry in Milky Way		
Detailed asteroseismic modeling and precise inferences of the physical properties of the benchmark subgiant μ		
Herculis		

The measurements of pressure mode and the so-called mixed mode oscillation frequencies of subgiant stars provide us with a unique opportunity to investigate the physical conditions in their deep interiors and also infer their global properties precisely. We present a detailed asteroseismic study of the benchmark subgiant μ Herculis based on the latest data from the SONG network. Since mixed mode frequencies are very sensitive to stellar internal structure and evolution, we computed a dense grid of stellar models and corresponding adiabatic oscillation frequencies. We carried out the glitch analysis to extract the properties of the helium ionization zone. The oscillation frequencies and measured helium glitch properties, along with effective temperature and metallicity, were fitted using Bayesian statistics. We find the mass, radius, and age of μ Herculis to be 1.11^{+0.05}_{-0.02}, 1.71^{+0.03}_{-0.02} and $8.4^{+0.4}_{-0.1}$ respectively. The inferred surface and initial helium mass fractions are $0.24^{+0.01}_{-0.03}$ respectively. We also observe a significant discrepancy between the observed extent of the helium ionization zone and that predicted by the stellar models, highlighting potential shortcomings in the models. In this presentation, I will discuss the application of asteroseismology and the corresponding stellar modeling approach for our target μ Herculis subgiant star.

ASI2025_243	Ajay Kumar Saini	Poster	
Stars, Interstellar Medium, and Astrochemistry in Milky Way			
Detection of Enhanced Germ	anium in a New Cool Extreme Hel	ium Star A980: Insights and Implications	
Hydrogen-deficient carbon stars (H	ldCs), as the name suggests, are	characterized by atmospheres that are poor in	
hydrogen and rich in carbon. When	n compared to a normal star, HdCs	s' optical spectra show very weak presence or	
absence of hydrogen Balmer lines	for their effective temperatures. T	he process that is responsible for the origin of	
these stars, which transforms a no	ormal star into a H-poor HdC star	, is still a mystery. For several decades, there	
were just about 5 known HdCs. Ho	wever, note that there exists yet ar	nother class of hydrogen-deficient stars known	
as R Coronae Borealis stars (RCB	s). Unlike HdCs, RCBs exhibit rem	narkable photometric variability by undergoing	
unpredictable light decline (up to a	bout 9 mag in visual). It is hearten	ing that a recent survey has reported about 27	
new HdCs, a sixfold increase in the	new HdCs, a sixfold increase in their number than the earlier known (Tisserand et al. 2022). Warner (1967) provides		
the abundances of five earlier know	the abundances of five earlier known HdC stars but with outdated observational methods and abundance analysis		
techniques. And, there are no meas	surements available for the elemen	tal abundances of newly discovered HdC stars	
to date. Detailed abundance analysis serves as a crucial observational constraint on theoretical models concerning			
the formation and evolution of stars	s. In this regard, we conducted a fin	e abundance analysis of a new warm HdC star,	
A980 (2MASS 18113561+0154320	6), using a high-resolution spectru	m obtained from Hanle Echelle Spectrograph	
(HESP), mounted on 2-m Himalayan Chandra Telescope (HCT) in Hanle, India. I will present the findings from our			
analysis which includes (a) a confirmation of A980 as an Extreme Helium (EHe) star that was earlier classified as an			
HdC star, (b) discovery of germanium transitions and its enhancement in A980, a cool EHe, suggesting synthesis of			
germanium in A980's evolution, and (c) strongest s-process enhancement measured in A980 among the other cool			
EHes.			

ASI2025_219	Akash P	Poster	
Stars, I	Stars, Interstellar Medium, and Astrochemistry in Milky Way		
Investigating the I	Physical and Chemical Characteria	stics of C-J type carbon stars	
Carbon stars serve as an importan	It class of stars that can provide v	valuable insight into the evolution of stars and	
nucleosynthesis at various stages	of their evolution. In general, carbo	on stars are classified as intrinsic stars, which	
produce carbon internally, and extr	insic stars, which gain carbon thro	ough binary mass transfer. Additionally, carbon	
stars are further classified based or	n their spectral characteristics into	four subgroups: C-H, C-N, C-J, and C-R. Every	
subgroup represents a specific stag	subgroup represents a specific stage of stellar evolution. Among these subgroups, C-J and C-R carbon stars are the		
least explored. C-J and C-R stars	often lack heavy elements assoc	iated with neutron-capture processes, which	
suggests their unique origins, in contrast to typical carbon stars that formed during the Asymptotic Giant Branch			
(AGB) phase. We investigated the origin and evolutionary state of C-J-type carbon stars in a recent study. We			
selected a sample of 300 C-J stars from Lamost data release 4. As a first step toward understanding their origin, we			
explored their chemical and kinematic properties. In addition, their binarity is assessed using the Renormalised Unit			
Weight Error (RUWE) of the GAIA survey. The preliminary results from our analyses will be presented during the			
meeting.			

ASI2025_359	Amrit Mishra	Poster	
Stars, I	nterstellar Medium, and Astrocher	nistry in Milky Way	
Investigating the fragmenta	ation and kinematics in the massiv	e, filamentary cloud IRAS 18337-0743	
High-mass star-forming clouds ex	hibit filamentary structures exter	ding to \gtrsim 1 pc and containing \gtrsim 10^3 solar	
masses of the dense gas that frag	masses of the dense gas that fragments along the major axis. These massive filaments are often characterized by		
strong turbulence and outflows, indicating a dynamical environment. Embedded within these filaments are dense			
cores of mass \lesssim 10 solar masses. For these dense cores to form massive protostars, they must accrete gas from			
the ambient medium. Such accretion processes are characterized by velocity gradient along the (sub-)filaments and			
signatures of infall. We present an in-depth fragmentation analysis and kinematic study of the massive filamentary			
cloud IRAS 18337-0743, located at a distance of 3.8 kpc. For this analysis, high-sensitivity and high-resolution ALMA			
Band 3 (3mm) and Band 6 (1.3mm) dust continuum and molecular line transitions (NH2D and H13CO+) are used.			
The large number of detected cores are classified into pre-stellar and protostellar cores, and the influence of			
protostellar feedback is also investigated.			

ASI2025_171	ANJALI SINGH	Poster	
Stars, Interstellar Medium, and Astrochemistry in Milky Way			
A regularisation technique to prec	cisely infer limb darkening using tra	nsit measurements: Can we estimate stellar	
	magnetic field?		
The high-precision measurements	of exoplanet transit light curves th	at are now available contain information about	
the planet properties, their orbital p	parameters, and stellar limb darker	ning (LD). Recent 3D magneto-hydrodynamical	
(MHD) simulations of stellar atmo	spheres have shown that LD dep	ends on the photospheric magnetic field, and	
hence its precise determination ca	n be used to estimate the field stre	ength. Among existing LD laws, the uses of the	
simplest ones may lead to biased ir	nferences, whereas the uses of co	mplex laws typically lead to a large degeneracy	
among the LD parameters. We have	ve developed a novel approach in	which we use a complex LD model but with	
second derivative regularisation during the fitting process. Regularisation controls the complexity of the model			
appropriately and reduces the dege	eneracy among LD parameters, th	us resulting in precise inferences. The tests on	
simulated data suggest that our in	simulated data suggest that our inferences are not only precise but also accurate. This technique is used to re-		
analyse 43 transit light curves measured by the NASA Kepler and TESS missions. Comparisons of our LD inferences			
with the corresponding literature values show good agreement, while the precisions of our measurements are better			
by up to a factor of 2. We find that 1D non-magnetic model atmospheres fail to reproduce the observations while 3D			
MHD simulations are qualitatively consistent. The LD measurements, together with MHD simulations, confirm that			
Kepler-17, WASP-18, and KELT-24 have relatively high magnetic fields (>200 G). This study paves the way for			
estimating the stellar surface magnetic field using the LD measurements.			

ASI2025_140	Anju Panthi	Poster
Stars, Interstellar Medium, and Astrochemistry in Milky Way		
UV-based study of an open cluster NGC 2627 using AstroSat		

We investigate the intermediate-age open cluster NGC 2627, located at ~ 2 kpc, using UVIT/AstroSat and other archival data. By applying the machine learning algorithm ML-MOC on Gaia DR3 data, we identify 422 cluster members, which include four blue straggler stars (BSSs), one yellow straggler star (YSS), one blue lurker (BL), one red clump (RC) star, and two binary candidates detected in both the UVIT/F148W and UVIT/F169M filters. We characterize these stars using multiwavelength spectral energy distributions (SEDs). Among the nine sources mentioned above, one BSS, the BL, and one binary candidate were found to have sources within 3" radius, so we did not fit their SEDs. Of the remaining six sources, we successfully fit two with single-component SEDs and four with the binary-component SEDs. The parameters derived from these binary-component SEDs suggest that the hot companions of the BSSs, YSS, RC star, and one binary candidate are extremely low-mass white dwarfs, confirming that at least four out of the nine stars (44%) are formed via mass transfer. We fit King's profile to the high-probability cluster members (p > 0.8) and determine the core radius (rc) to be 3.84' and the tidal radius (r t) to be 36.85'. Our analysis shows that equal-mass binaries are most concentrated near the cluster center, followed by single massive stars and single low-mass stars. Additionally, the BSS population is located within a radius of ~10 times r c, indicating that the cluster is dynamical evolved.

ASI2025_424	Dipang Vaishnav	Poster	
Stars, I	Stars, Interstellar Medium, and Astrochemistry in Milky Way		
Spectroscopic Stud	y of Type-II Supernovae in Progeni	tors with Extended H-envelope	
Type-II supernovae in progenitors w	vith an extended H-envelope follow	v a light curve with three distinctive phases: (a)	
an initial cooling peak (b) a recom	bination plateau, as the ionized h	ydrogen recombines, and finally, as the event	
enters the nebular phase, (c) a lo	ng tail fueled by radioactive decay	y of 56Ni → 56Co → 56Fe. We present here a	
spectroscopic study of three type	spectroscopic study of three type II events- the radiobright SN2018ivc, SN2024exw and SN2024ggi- observed at		
similar epochs. The early spectra reveal prominent emission lines, including H α , H β , H γ , H δ , H ϵ , He I, C IV, and Fe I,			
II, and III, and absorption features o	II, and III, and absorption features of Na I, all with varying intensities as the SNe evolves. In the late nebular stage, the		
Ca II and [Ca II] NIR lines and other metal lines also emerge. We present a detailed analysis of the Balmer line			
profiles, notably $H\alpha$, which retain their characteristic P-Cygni structure well into the nebular phase. We use our			
spectral studies to characterize the progenitor's and its environment's properties (e.g. mass, local metallicity, etc.),			
and to quantify the dynamics of shock-ejecta interactions as a function of the progenitor characteristics. Key words:			
Type-II SNe, H-envelope, SN2018ivc, SN2024exw, SN2024ggi, P-Cygni , mass, metallicity			

ASI2025_648	Firoza Sutaria	Poster
Stars, Interstellar Medium, and Astrochemistry in Milky Way		
An optical study of interacting supernovae.		

Mass loss during the evolutionary lifetime of stars plays a crucial role in determining their final stages, but the true rate of mass loss, and the evolutionary stage at which it occurs, remains largely unknown, especially in the case of massive, low metallicity stars. Supernovae with massive (M>10 M_sun) progenitors reveal the existence of a circumstellar medium (CSM), the nature and morphology of which appears to depend on the progenitor properties, as well as on the properties of the star-forming region associated with the progenitor. We present here optical studies of several type-IIn supernovae, (with focus on SN2023usc) at epochs ranging from early cooling to late nebular stage, and explore the inferred variations in the CSM's physical properties and geometry. We find that an asymmetric distribution of CSM, either via a disk, bipolar or even a multi-shelled morphology, greatly influences the spectral line profiles, especially early in the event's temporal evolution. We find that the class of interacting supernovae with dense CSM (type-IIn) consists of at least two sub-types -- the long lived, super luminous type-IIn events like SN2017hcc, which remain intrinsically bright for up to several years, and the short lived ones (e.g. SN2023usc) which reach nebular stage within a few \$\times\$ 100 d. This suggests that there may be multiple factors, including progenitor mass, metallicity, and even binarity which may be responsible for optical properties of this relatively rare class of supernovae.

ASI2025_138	Himanshu Tyagi	Poster	
Stars, I	nterstellar Medium, and Astrocher	nistry in Milky Way	
IPA: L	Inveiling a New Era of Protostellar	Winds with JWST	
Protostellar jets and winds play	a crucial role in the evolution of	of protostellar systems by removing angular	
momentum and enabling accretio	n, while also regulating star form	ation rates through feedback on their parent	
molecular clouds. However, the r	nechanisms driving jet and wind	formation, as well as their feedback effects,	
remain poorly understood. We wi	ll present the latest results from	the JWST Cycle 1 GO program Investigating	
Protostellar Accretion (IPA) that o	Protostellar Accretion (IPA) that observed five Class 0 protostars across a broad luminosity range (0.2 to 10,000		
Lsun). Our high angular resolution spectral imaging from JWST offers unprecedented insights into the morphology,			
kinematics, and dynamics of these	kinematics, and dynamics of these wide-angle winds traced by the molecular hydrogen (H_2) emission. We observe		
complex emission structures, with JWST revealing a wide hourglass-shaped outer boundary in multiple ro-			
vibrational and pure-rotational H_2 lines. Complementary ALMA 12CO observations, which trace the broader wind			
cavities, align with JWST's scattered light data, showing that H_2 winds are more narrowly confined than the low-J			
CO winds—indicating that H_2 likely traces disk winds. Additionally, our findings suggest that the wide-angle winds			
are not driven by atomic jets. We will discuss the implications of these results for our understanding of protostellar			
wind launching mechanisms and their impact on molecular clouds.			

ASI2025_600	JONMONI DUTTA	Poster	
Stars, I	Stars, Interstellar Medium, and Astrochemistry in Milky Way		
Nonlinear normal acoustic modes	in nonthermal star-forming clouds	s with moderative extra-negative ionic effects	
The presence of negative ions in the	e space and astrophysical environ	ment is inevitable [1]. It plays a significant role	
in triggering non-local gravitational	collapse dynamics for the bounded	ed structure formation mechanism in complex	
clouds of infinite extension [1]. We	e herein develop a theoretical mod	del formalism to explore the nonlinear normal	
acoustic modes excitable in spher	ically symmetric tridust molecular	clouds (TMCs). The partially ionized complex	
TMC is composed mainly of lighter	species, such as electrons, posit	ive ions, and negative ions. Its heavier species	
include bipolar charged dust grains	alongside partial ionization. The T	MC model is presumed to form initially a quasi-	
neutral hydrostatic homogeneous	equilibrium configuration [2]. The	spatial behavior of the high-energetic lighter	
compositions, such as electrons,	compositions, such as electrons, positive ions, and negative ions, is described by the κ -deformed Kaniadakis		
distribution laws [3]. The novelty of	distribution laws [3]. The novelty of this distribution function lies in its ability to offer a robust model for studying high-		
energy particles in the astrophysic	cal context where relativistic effe	ects are significant [3]. The thermal pressure	
behavior of constitutive dust fluids	s is formulated in the framework o	of the Larson logatropic equation of state. The	
application of a standard reductive	application of a standard reductive perturbation method yields a unique pair of extended Korteweg-de Vries (KdV)		
equations with dissimilar nonlinear	r and dispersion effects. It is seen	analytically that the characteristic behavior of	
the nonlinear structural patterns depends on the diverse equilibrium plasma parameters. A detailed numerical			
analysis characterizing the elaborate modal features in a conjugational form is in progress. References [1] T.J. Millar,			
C. Walsh, and T.A. Field, "Negative ions in space", Chemical reviews, 117, 3, February 2017, pp. 1765-1795. [2] C.B.			
Dwivedi, A.K. Sen, and S. Bujarbarua, "Pulsational mode of gravitational collapse and its impact on the star			
formation", Astronomy and Astrophysics, 345, May 1999, pp. 1049-1053. [3] G. Kaniadakis, "Statistical mechanics			
in the context of special relativity", Physical review E, 66(5), 2002, pp. 056125(1-17).			

ASI2025_642	Komail Murtaza	Poster
Stars, I	nterstellar Medium, and Astrocher	nistry in Milky Way
BVRI Photometric Study of star clusters UBC207, UPK402, UPK398 and BE28		
BVRI Photometric Study of star clusters UBC207, UPK402, UPK398 and BE28 Komail Murtuza, Priya Hasan We		
present BVRI photometry of stars in the field some poorly studied clusters UBC207, UPK402, UPK398 and BE28		
using HCT data obtained in November 2022. By determining the stellar membership using Gaia data, we identify the		
probable cluster members in these clusters. We use our sample to obtain robust cluster parameters using ASteca.		
We find the mass functions of these clusters.		

ASI2025_290	Koshvendra Singh	Poster	
Stars, I	nterstellar Medium, and Astrocher	mistry in Milky Way	
Modelling the Accretion Hot	spot of Low-Mass Young Stars: Ins	sights into Thermal and Spatial Structure	
Low-mass young stars undergo ma	gnetospheric accretion where disk	matter follows stellar magnetic field lines and	
freely falls on the star creating a sh	nock-heated region with \sim 104K te	mperature, called hotspot. The hotspot can be	
regarded as a 2-dimensional (2D) s	slice at the stellar surface of a 3D a	accretion dynamics across the disk and star. It	
carries imprints of the variable ac	cretion dynamics (Espaillat et al.	2021, Singh et al. 2024). The hotspot is very	
responsible for the thermal-chem	nical-mineralogical evolution of th	ne irradiated disk. However, the thermal and	
spatial structure of the hotspot is	not well understood. In this talk, I	will present our recent work on modeling the	
thermal-spatial structure of the ho	otspot. We modeled the thermal p	profile along the two spherical coordinates by	
'Gaussian-like' symmetric functi	ons, motivated by the results	of sophisticated 3D MHD simulations of	
magnetospheric accretions from Ki	ulkarni and Romanova 2013. These	e profiles are further motivated by the analytical	
equation of the spatial distribution	equation of the spatial distribution of accreting matter based on the star-disk geometry. The model observables are		
time-lag among lightcurves, indica	ting the temperature distribution ir	n hotspots, peak-to-peak lightcurve amplitude,	
reflecting temperature ranges in it,	reflecting temperature ranges in it, as well as mass-accretion rate. We fit our model onto the observations of the		
dynamically and morphologically evolving hotspot of a young star named EX Lupi, during its outburst in March 2022.			
The thermal structure of the hotspot provides the extent of the stellar surface covered by density contours, providing			
insights into which parts of the disk are more efficiently cou- pled to the accretion. As the hotspot evolves over			
accretion variation as shown by Singh et al 2024, this model will provide insights into why specific regions of the disk			
are more prone to accretion than others leading to a better understanding of the accretion-outflow relation and its			

effect on the star-disk system.

ASI2025_269	Laksh Gupta	Poster	
Stars, Ir	Stars, Interstellar Medium, and Astrochemistry in Milky Way		
Study of white dwarfs in NGC28	08 using Near-Ultraviolent and opt	tical data from the Hubble Space Telescope	
NGC2808 is a highly unusual Gala	ctic globular cluster (GC) that sup	posedly underwent more than one episode of	
star formation and hosts distinct s	tellar sub-populations and a signi	ficant number of binaries. This study analyzes	
the white dwarf stars (WDs ~ 500) stars) in NGC2808 using deep 1	near-ultraviolet and optical data (F275W and	
F336W filter systems) from the Hu	bble Space Telescope UV Globula	r Cluster Survey (HUGS). Recently discovered	
slowly cooling WDs (SCWDs) in onl	slowly cooling WDs (SCWDs) in only two GCs - M13 and NGC6752 have greatly impacted our understanding of WDs		
as cosmic chronometers, given that it contradicts the canonical definition of WDs as objects that simply cool. To			
investigate this, we analyzed the color-magnitude diagrams (CMDs) of NGC2808 using various combinations of			
filters. We performed star count-crossing time analysis to estimate the theoretical star counts of main sequence			
turn-off and WDs stars by comparing the completeness-corrected observed counts. We used various isochrones,			
evolutionary tracks, and BASTI CO-core/H-envelope 0.54 M☉ cooling models of WDs and adopted reddening and			
distance modulus values from the literature to find the crossing times of evolutionary phases. We inferred a			
significant excess of WDs from the analysis and WD luminosity function plots, which suggests that these could be			
slowly cooling Hydrogen envelope WDs or He-core WDs in the cluster.			

ASI2025_593	Manash Samal	Poster	
Stars, I	Stars, Interstellar Medium, and Astrochemistry in Milky Way		
Exploring star clust	ers using with the 2.5m Mt. Abu tel	escope: the case of NGC 5053	
Star clusters are ideal laboratory for te	esting stellar evolution of stars in the	crowded environment. We explore, a few rich star	
clusters using the faint object camera	(FOC) mounted on the 2.5m telesco	pe of the Mt. Abu observatory. Here, we present a	
detailed analysis of the one of the obs	erved star clusters, NGC 5053, using	g, r, and I filters obtained with the exposure time of	
1200 s, 900 s, and 900 s, respectively.	The NGC 5053 cluster is an old and ex	xtremely metal-poor globular cluster situated in the	
Galactic halo at a distance of 17.5 kpc	Galactic halo at a distance of 17.5 kpc. We could achieve the photometric depth of 23.0 mag, 22.7 mag, and 22.6 mag in g, r,		
and I bands, respectively, with an uncertainty of 0.1 mag each. The g, r, and I filter magnitudes were used to construct the colour-			
magnitude diagrams (CMDs) to identify stars of various evolutionary phases present in the cluster. We could identify sources in			
the red-giant branch (RGB), sub-giant branch (SGB), main-sequence turn-off (MSTO) and main sequence (MS) phases. We			
derived the age of the cluster as 12.5 Gyr by fitting the PARSEC isochrones on the SGB, MSTO, and MS stars in the CMDs. We			
find the turn-off mass of the cluster as 0.76 Msun. We were able to identify the sources down to 0.6 Msun in the cluster using			
deep photometry in the g-band. We also observed a few exotic stellar populations in the cluster, e.g., blue straggler and blue			
lurker stars. Their multi-wavelength photometric fluxes combing (UV, optical, and near-IR) suggest that they are young (age: 3.5			
Gyr to 10 Gyr) and massive (0.8 Msun to 1.13 Msun) relative to the cluster age and turn-off mass, respectively; and few of them			

are in binary system revealing their formation in the cluster through collision/merger as well as through mass-transfer channels.

ASI2025_151	Mrinmoy Sarkar	Poster	
Stars, I	Stars, Interstellar Medium, and Astrochemistry in Milky Way		
Asteroseismology of the	e mild Am delta Sct star HD 11866	0: TESS photometry and modelling	
We present the results of an asteroseis	smic study of HD 118660 (TIC 1717298	360), a chemically peculiar (mild Am) star exhibiting	
delta scuti pulsations. It is based on	the analysis of two sectors of time-s	series photometry from the space mission TESS (
Transiting Exoplanet Survey Satellite)	and seismic modelling. It yielded the d	letection of 15 and 16 frequencies for TESS sectors	
23 and 50, respectively. The identified	23 and 50, respectively. The identified pulsation modes include four radial (l = 0) and five dipolar (l = 1) ones. The radial modes		
are overtones with order n ranging from 3 and 6. Such high values of n are theoretically not expected for stars with the effective			
temperature of HD 118660 (Teff ≈ 7550 K) located near the red edge of the delta scuti instability strip. To estimate the			
asteroseismic parameters, we have generated a grid of stellar models assuming a solar metallicity (Z = 0.014) and different			
values for the convective overshooting parameter (0.1 $\leq \alpha ov \leq 0.3$). We conclude that the analysis of the radial modes is			
insufficient to constrain αov and Z for delta scuti stars. The value for the equatorial velocity of HD 118660 derived from the			
seismic radius and the rotational frequency is consistent with values found in the literature.			

ASI2025_509	NAMBRAM NIRODA DEVI	Poster
Stars, I	nterstellar Medium, and Astrocher	mistry in Milky Way
Exploring the Umov Effect in	Dust Aggregates: Influence of Ma	terial Composition and Size Distribution
Exploring the Umov Effect in Dust Aggregates: Influence of Material Composition and Size Distribution This study investigates the Umov effect—an inverse correlation between reflectivity and the degree of linear polarization of scattered light—within the context of aggregate dust models. We analyze both polydisperse and monodisperse aggregates, employing the multisphere T-matrix (MSTM) code to simulate light scattering by various dust compositions, including carbonaceous materials, silicates, and Halley-like dust. The research highlights the impact of particle size distribution on the Umov effect and explores the optical properties of different aggregate types over a range of refractive indices. Our findings contribute to a deeper understanding of light scattering in cosmic dust environments.		

ASI2025_315	Narendra S	Poster	
Stars, I	Stars, Interstellar Medium, and Astrochemistry in Milky Way		
An X-band study of ult	ra-compact HII regions using radic	recombination line observations	
Ultra-compact HII (UCHII) region	s are small (< 0.1 pc) and dens	e (> 10^4 cm-3) regions of hot ionised gas	
surrounding young O-B stars embe	dded in dusty molecular clouds. Th	ese Galactic UCHII regions are considered one	
of the best tracers for studying high	n-mass star formation and the evol	lution of the interstellar medium. They are also	
useful secondary calibrators for s	submillimeter telescopes. UCHII	regions are bright in radio and submillimeter	
frequencies, with emission domin	ated by free-free broad-band co	ntinuum, molecular lines and hydrogen radio	
recombination lines (RRLs). These	e RRLs can be used to determine	e the electron temperature and density of HII	
regions, providing useful information	regions, providing useful information in their physical properties and in probing the environment around hot young		
massive stars. We present the X-band study of three UCHII regions, namely IRAS 17271-3439 (ATCA), G34.26+0.15			
and W51d (VLA). We report the presence of H α (H85 α to H90 α) and H β (H107 β to H113 β) RRLs in the band of 8.776			
GHz to 10.824 GHz from the sources. IRAS 17271-3439 was observed with a single window of 2048 channels and			
a resolution of 1 MHz; G34.26+0.15 and W51d had 16 spectral windows, each of 64 channels and a resolution of 2			
MHz. The data was analysed following standard reduction procedures on CASA, making continuum images and			
spectral cubes for each RRL. IRAS 17271-3439 and W51d were unresolved. G34.26+0.15 was resolved with two			
nearby hypercompact HII regions in the field, across which we observed H α RRLs. With the observed RRLs and using			
the Helium-to-Hydrogen abundance ratio from the literature, we infer the electron temperature, emission measure,			
mean electron density, and other physical properties of these UCHII regions.			

ASI2025_236	Narendra Bhatkar	Poster	
Stars, I	Stars, Interstellar Medium, and Astrochemistry in Milky Way		
Numerica	l modelling of the molecular region	towards Herschel 36	
The Herschel 36 stellar system is a	an important part of the Lagoon Ne	bula. The interstellar medium associated with	
this sightline has been probed ex	tensively and has been found to	host many atomic and molecular species. In	
particular, H 2 has been detected	by Far Ultraviolet Spectroscopic	Explorer (FUSE) in multiple vibrational levels	
through its absorption lines against	the spectrum of the bright backgro	und source. Such high excitation of H2 is rarely	
observed in interstellar studies. In this project, we perform numerical modelling using the spectral synthesis code			
CLOUDY to constrain the physical conditions in the Herschel 36 environment. CLOUDY performs self-consistent			
calculations to determine the ionization, thermal, and chemical state of the modelled cloud, while incorporating a			
detailed treatment of the microphysics of H2 along with dust grain physics. We match our model predictions of the			
H2 rotational and vibrational level population against the corresponding H2 observational data previously reported			
in literature. This leads us to insight into the density, temperature, cosmic ray ionization rate, and spectral energy			
distribution of the incident radiation field. We infer density conditions typical of diffuse to slightly dense molecular			
gas, irradiated by intense UV and X-ray radiation.			

AS12025 581	Ninun Changhaa	Dector	
ASI2025_581	Nipun Ghanghas	Poster	
Stars, I	nterstellar Medium, and Astrocher	nistry in Milky Way	
Inferring Asteroseismic Parameter	s from Short Observations Using D	eep Learning: Application to TESS and K2 Red	
	Giants		
Asteroseismology is the study of re	sonant oscillations of stars to infer	their internal structure and dynamics. It is also	
a powerful tool for precisely det	ermining stellar parameters such	n as mass, radius, surface gravity, and age.	
Additionally, the mixed modes in	red giants carry information from	the core, which places strong constraints on	
stellar evolution. Using these mixed	d modes, we can estimate the peri	od spacings of gravity modes, which is directly	
related to the core mass. The ong	going TESS mission, with its near	ly complete sky coverage, presents a unique	
opportunity to uniformly probe stel	opportunity to uniformly probe stellar populations across the Milky Way. TESS is estimated to have observed more		
than 300,000 oscillating red giants, most of which have one to two months of observations. Given the scale of this			
dataset, we need a fast, efficient, and robust way to analyse the data. In this work, our objective is to develop a			
machine learning based method to infer asteroseismic parameters from short-duration observations. Specifically,			
we focus on two global seismic parameters, the large frequency separation (Δv) and the frequency at maximum			
power (vmax), from one-month-long TESS observations of red giants. Meanwhile, for K2 data, our focus extends to			
inferring the period spacings of dipolar gravity modes ($\Delta\Pi$ 1), in addition to Δv and vmax. Our findings demonstrate			
that our machine learning algorithm can accurately infer Δv and vmax for approximately 50% of samples created by			
taking one-month Kepler and K2 observations. For TESS one sector data however, we recover reliable Δv for only			
about 10% of the stars. Additionally, we get reliable $\Delta\Pi$ 1 inferences for about 90 young red-giants from K2. For these			
$\Delta\Pi$ 1 inferences, we see a good match with the well known Δ v– $\Delta\Pi$ 1 observed in Kepler red-giants.			

ASI2025_517	Nirupam Roy	Poster	
Stars, I	nterstellar Medium, and Astrocher	nistry in Milky Way	
Pinching the Galaxy: The	Impact of Molecular Cloud Comp	lexes on Atomic Interstellar Medium	
The Milky Way is a spiral galaxy cor	nposed of billions of stars, gas, an	d dust. Within this cosmic expanse, molecular	
clouds, dense regions of gas and de	ust, play a crucial role in the forma	tion of new stars. These clouds, often grouped	
into massive complexes, exert a	significant gravitational influence	e on the surrounding interstellar medium. A	
fascinating phenomenon, known as	s the "pinching effect," occurs whe	n these molecular cloud complexes compress	
the surrounding atomic hydrogen	the surrounding atomic hydrogen (H I) gas, reducing its vertical scale height. This gravitational force effectively		
flattens the gas layer, making it thinner and more concentrated. Recent observational studies have provided			
compelling evidence for this pinching effect. By analyzing multi-wavelength observations of the Milky Way, we have			
identified molecular cloud complex that exhibit a clear impact on the surrounding H I gas. These observations reveal			
a distinct reduction in the vertical extent of the H I layer in the vicinity of the complex. The pinching effect has profound			
implications for our understanding of galactic structure and evolution. By altering the distribution of gas, these			
molecular cloud complexes can influence star formation rates and the overall dynamics of the galactic disk.			
Furthermore, the study of this phenomenon can provide valuable insights into the interplay between gravity, gas, and			
stars in galaxies.			

ASI2025_401	Omkar Jadhav	Poster	
Stars, I	Stars, Interstellar Medium, and Astrochemistry in Milky Way		
Understanding the Interplay of Magnetic Fields and Gas Dynamics in the G47 filamentary cloud			
Several studies have shown that filamentary clouds are associated with the star formation activities. However, the			
overall process of star formation remains highly complex due to the interplay among gravity, turbulence, magnetic			
field (B-field), and stellar feedback. Among these the role of B-field in the process of star-formation remain the least			
understood. To understand the role of B-field in star formation processes, we present a multi-wavelength study of			

the filamentary cloud G47 (hereafter G47; d ~4.44 kpc) containing mid-infrared bubbles, N98, B1, and B2. The SMGPS 1.3 GHz continuum map detected radio emission toward N98, B1, and newly depicted emission from B2. SOFIA/HAWC+ 214 μ m polarization data show that the plane-of-the-sky B-field toward G47 is mostly perpendicular to the cloud's major axis, though some regions exhibit a curved structure. The position-position-velocity (PPV) diagram of 13CO reveals a U-shaped structure toward the N98 HII region, with a blue-shifted component near 52.3 km/s and a red-shifted component around 63 km/s. The red-shifted component is spatially associated with the curved B-field morphology. This U-shaped structure in PPV space suggests that N98 may be a new candidate for a bipolar HII region with a nearly face-on geometry. The energy budget calculations suggests that the B-field dominates over turbulence and gravity in the G47. Furthermore, the radial column density and velocity profiles of G47 show the signatures of converging flows in a sheet-like structure in the G47. The analysis of the relative orientations between the B-field and local gravity suggests that G47 may undergo gravitational contraction along the B-field lines once it becomes magnetically supercritical. Overall, these findings suggest that B-fields have a significant influence on the star formation processes in G47. During this presentation, I will discuss these results in more detail.

ASI2025_184	Ranjana Jaiswal	Poster
Stars, I	nterstellar Medium, and Astrocher	nistry in Milky Way
Investigat	ion Of Young Open Clusters NGC	1582 and NGC 6604
Abstract: We present the results of	optical photometric observations	of two open clusters NGC 1582 and NGC 6604
using 1.3-m Devasthal Fast Optica	l Telescope (DFOT) along with arc	chival photometric data Gaia DR3 and 2MASS.
We determine structural and fund	amental parameters such as clus	ter centre, cluster extent, reddening, age and
distance of the selected region. 316 most probable members in NGC 1582 and 362 members in NGC 6604 have		
been identified with membership probability higher than 80%. Mean proper motions in RA and DEC are estimated as		
(1.99+0.084, -1.42+0.061) and (-1.55+0.036, -2.44+0.031) mas yr-1 for NGC 1582 & NGC 6604 respectively. A		
comparison of observed CMDs with	n the theoretical isochrones leads	to age of these two clusters as 8.4 Myr for NGC
1582 and 6.8 Myr for NGC 6604. W	e found distances to be 1.1 Kpc ar	nd 1.6 Kpc for open clusters NGC 1582 & NGC
6604 respectively using parallax of member stars and isochrone fitting method. We have derived mass function		
slope in the cluster region. Evidence of mass segregation is also observed in both the open clusters. Keywords: Star		
Cluster, membership probability, mass segregation		

ASI2025_374	Rittik Bhattacharjee	Poster	
Stars, I	Stars, Interstellar Medium, and Astrochemistry in Milky Way		
Integrated Modeling of Diffuse F	FUV and Dust Processed IR Emissi	ons in the 30 Doradus Star Forming Region	
The extinction of starlight in mole	cular clouds is crucial for unders	standing dust evolution within the interstellar	
medium (ISM). Far-ultraviolet (FUV) emissions provide insights into he	ow starlight scatters off interstellar dust grains,	
while infrared (IR) emissions reve	eal details about dust compositi	on and distribution. These observations are	
particularly valuable in HII regions	experiencing starburst activity, as	they help trace star formation processes and	
feedback mechanisms within these	e dense, active areas of the ISM. Th	is study focuses on modeling the diffuse, dust-	
scattered FUV emissions surround	ing the R136 star cluster, located	at the heart of the 30 Doradus HII region—one	
of the most active star-forming reg	of the most active star-forming regions in the Local Group, situated within the Large Magellanic Cloud (LMC). Using		
the SKIRT radiative transfer code, which employs a Monte Carlo algorithm, we simulate FUV emissions and compare			
them with observational data from the Far Ultraviolet Spectroscopic Explorer (FUSE). Our model incorporates a 3D			
distribution of 305 stars within a 70 parsec radius, identified through the VLT Flames Tarantula Survey (VFTS) and			
the Hubble Tarantula Treasury Proje	ect (HTTP). To represent the stellar	population, we employ the Starburst99 (SB99)	
model, which includes the Kroupa mass function. Our findings suggest that accurately positioning radiation sources			
significantly improves the precision of FUV and IR simulations. Additionally, initial results indicate that varying the			
mass concentration within clumps in the model affects the UV emission, with a higher concentration resulting in			
more intense UV emission . We also observe that dust grain size distribution, modeled through SKIRT's ability to			
categorize silicate, graphite, and PAH particles by size, strongly impacts IR emissions.			

ASI2025_568	Rohit Chaudhary	Poster	
Stars, I	Stars, Interstellar Medium, and Astrochemistry in Milky Way		
Understanding the importance of	of magnetic fields in the "collect an	d collapse" model of star formation: a case	
	study towards S104		
We present the results based on the	ne sub-mm polarization observatio	ons conducted with JCMT SCUBA2/POL2 data	
towards the S104 region. We have	ve delineated the magnetic field	(B-field) morphology in clumps formed as a	
consequence of the "collect and	collapse mode of triggered star fo	ormation." We aim to understand the relative	
importance of the B-field in comp	importance of the B-field in comparison to turbulence, gravity, and electron thermal pressure induced by the HII		
region. The analyses show both par	region. The analyses show both parallel and perpendicular B-field patterns with respect to the direction of the I-front.		
The power-law fit over intensity versus polarization data yields an index of α = - 0.65±0.06, suggesting efficiently			
aligned dust grains across various depths of a massive clump in S104. This implies that the observed polarized dust			
emission traces B-field morphology even in the denser parts of the clump. We estimate the B-field strength by			
making use of the DCF method and structure-function analyses. Along with these results, we will also discuss the			
relative importance of magnetic field, turbulence, ionized gas pressure, and gravity on the stability of the formed			
clumps. Finally, we will compare these results with the MHD simulation results for understanding the star formation			
at the borders of the HII regions.			

ASI2025_595	Rupesh Behera	Poster
Stars, Interstellar Medium, and Astrochemistry in Milky Way		
A comprehensive X-ray study of Cygnus Loop.		

Supernova remnants (SNRs) are a mix of ejected material in a supernova explosion and interstellar material swept up by the shock wave. SNRs offer a unique opportunity to study the interactions between relativistic ejecta and supernova shock waves with the local interstellar medium (ISM). These nebular structures are crucial in shaping the structure and thermodynamic properties of the ISM. Surprisingly, much remains unknown about how they eventually mix with the ISM, leading to its chemical enrichment. In our study, we examined various segments of the Cygnus Loop using proprietary X-ray and UV observations from SXT and UVIT, respectively. Additionally, we incorporated archival X-ray data from other observatories. The Cygnus Loop is thought to have originated from a core-collapse supernova; however, no compact stellar remnant has been confidently identified. We performed X-ray spectroscopy on 17 regions spanning most of this extended 3x4 degree object. We fitted the spectra with composite thermal models, and the best fit model was analyzed by creating distribution maps. This allowed us to investigate variations in parameters such as temperature and elemental abundances with prominent emission lines in the soft X-ray spectrum. Our analysis revealed notable differences in properties between the eastern, western, and southern regions of the Cygnus Loop, which were evident directly from the spectra as well. Additionally, we explored the intercorrelations among these parameters by running the MCMC chain on the best fit model. Previous studies focusing on select regions of the Cygnus Loop indicated the possible presence of charge-exchange (CX) emission in the soft X-ray band and enhanced abundances of certain elements. Our best-fit models similarly showed enhanced abundances across multiple regions. Due to the low resolution of the spectra, it is nearly impossible to identify each of the CX emission lines and highly resolved X-ray spectra will be required.

ASI2025_744	SAMRAT GHOSH	Poster
Stars, Interstellar Medium, and Astrochemistry in Milky Way		
Dynamic Photometric Variability in Three Young Brown Dwarfs in Taurus: Detection of Optical Flares with TESS		
data		
We present I-band time-series photometric variability studies of three known nearby (\sim 140 pc) and young (\sim 1 Myr)		
brown dwarfs (BD) in the Taurus star-forming region in the Perseus Molecular Cloud. From 10 nights of ground-based		
observations over a time span of 10 years, with a typical run of 3 to 6 hours each night, we estimated that the BDs		
show unstable short-scale periodicity from 1.5 to 4.8 hours. Using the long-term photometry from the Transiting		
Exoplanet Survey Satellite (TESS), we have conducted a time-resolved variability analysis of CFHT-BD-Tau 2 and		
CFHT-BD-Tau 4, revealing orbital periods of \sim 0.96 days and \sim 3 days respectively, consistent with earlier studies.		
We also found two superflares in TESS data for CFHT-BD-Tau 4 and estimated the flare energies in the 10^35 -		
10^36 erg range. A magnetic field of \sim 1.66 kG is required to generate such flare energies on this BD. We performed		
spot modelling analysis on CFHT-BD-Tau 2 and CFHT-BD-Tau 4 to address the variability detected in the data using		
the package BASSMAN. The sources ' spectral energy distribution and infrared colours suggest sufficient		
circumstellar material around them.		

ASI2025_558	Sanchali Nath Mazumdar	Poster	
Stars, I	nterstellar Medium, and Astrocher	mistry in Milky Way	
Exploring the depe	endence of outflow direction on the	e orientation of magnetic field	
The magnetic field plays a significant	role in shaping dark molecular clouds	s and may regulate cloud fragmentation, leading to	
star formation, making it a subject wel	l worth studying. The magnetic field al	ong with other elements affects the characteristics	
of the phenomena of high-velocity ma	iss ejection from molecular clouds kr	nown as the molecular outflow that are associated	
with the newborn stars. Numerous stu	dies have shown that the outflows typ	vically tend to line up with the cloud-scale magnetic	
field while various other studies contr	adict it. So, the relationship between	them still remains a subject of debate. This study	
aims to address these uncertainties b	aims to address these uncertainties by integrating observational data with theoretical models. In our study, we consider 22		
molecular clouds in order to make a d	molecular clouds in order to make a collective study of the dependence of bipolar outflow direction on the orientation of the		
magnetic field. The outcome indicates a correlation between the orientation of the magnetic field and the position angle of			
bipolar outflow. This is also supported by a statistical analysis indicating a minimal projection effect. Additionally, we uncover			
potential significances of the Galactic magnetic field, magnetic field strength, inclination angle of outflow and the position angle			
of the minor axis. Through this analysis, our study aims to broaden the knowledge of star formation processes and the early			
phases of stellar system evolution.			

ASI2025_298	Sanmesh Deshmukh	Poster	
Stars, I	nterstellar Medium, and Astrocher	mistry in Milky Way	
Study	of an open cluster Berkeley 21 us	ing UVIT/AstroSat	
We present the study of an intermedia	te age (~ 2.18 Gyr) open cluster, Berk	eley 21, located at a distance of 5 kpc towards the	
Galactic anticentre direction using $\sim l$	JVIT/AstroSat data along with the oth	ner multiwavelength archival data. It is possibly the	
lowest metallicity ([Fe/H] = -1.3 dex) of	lowest metallicity ([Fe/H] = -1.3 dex) object in the open cluster sample studied. We \sim apply a machine learning algorithm, ML-		
MOC, on Gaia DR3 data, and identify	MOC, on Gaia DR3 data, and identify 325 cluster members, out of which we detect nine sources in UVIT/F172M filter on		
performing the PSF photometry. These nine sources include three blue straggler stars, five main-sequence stars, and one red			
clump star. We will construct the multiwavelength spectral energy distributions of these sources in order to characterize them			
and discover the hot companions associated with them, if any. The characterization of the hot companions will then be used to			
determine their nature and unravel the formation channels of the above- mentioned objects.			

ASI2025_645	SAPAN KUMAR SAHOO	Poster	
Stars, Interstellar Medium, and Astrochemistry in Milky Way			
Probing regularity of the time-tick	s from neutron star with high-prec	ision timing of GMRT-discovered millisecond	
	pulsars.		
Pulsars are highly magnetized, rotating	g neutron stars emitting beams of ele	ctromagnetic radiation that when swept by line-of-	
sight these beams, look like a pulse o	f radiation, hence the name 'pulsar'.	Millisecond pulsars (MSPs), with periods under 30	
milliseconds, are exceptionally stable	, making them ideal for gravitational w	vave detection and as components in pulsar timing	
arrays (PTAs). Pulsar timing involves	measuring the time of arrivals (ToAs)) and timing residuals over an extended period, to	
disentangle the phenomena that affect	t them like rotation, motion, and the ir	fluence of gravitational forces, with applications in	
detecting gravitational waves. The Gia	nt Metrewave Radio Telescope (GMR	T), covering a wide radio frequency range of 120 to	
1460 MHz, has demonstrated excellen	t capability in precise low-frequency t	iming measurements. This study extends the timing	
baseline of MSP J0248+4230 and MSP	baseline of MSP J0248+4230 and MSP J1207-5050, discovered by the Giant Metrewave Radio Telescope (GMRT), from 5 to 11		
years, using uGMRT observations. Achieving an rms deviation of 13.658 microseconds and 12.793 microseconds, we measured			
the spin period at 2.60083478563372 milliseconds with extraordinary precision. This implies the period will shift only 5			
nanoseconds over 10,000 years, making it a highly stable timekeeper. For the first time, we also detected proper motion (μ_T =			
1.35 ± 0.35 mas/year and μ_T = 7.13 ± 0.47 mas/year) for J0248+4230 and J1207-5050, indicating transverse velocities of 15.3			
± 4.4 km/s and 43.9 ± 5.3 km/s respectively. With an improved residual rms of 6.328 microseconds (50% improvement) and			
6.336 microseconds (58% improvement), this study aligns with standards seen in MSPs listed in the European PTA. Extending			
this analysis could help qualify J0248+4230 and J1207-5050 for PTA projects, illustrating GMRT's potential for advancing			
fundamental physics research.			

ASI2025_117	SHIVANI MISHRA	Poster	
Stars, I	Stars, Interstellar Medium, and Astrochemistry in Milky Way		
Rotational	and vibrational investigation of sul	ostituted PAH clusters	
Several astronomical objects within	the Milky Way and in external galax	ies exhibit mid-infrared spectra characterized by	
prominent features at 3.3, 6.2, 7.7, 8.6,	and 11.2 μm , collectively known as th	e unidentified infrared (UIR) bands. These emission	
features align closely with the vibration	onal modes of polycyclic aromatic hy	drocarbon (PAH) molecules, as shown by Tielens	
(2008). To fully understand the origins	(2008). To fully understand the origins and characteristics of the UIR bands, it is crucial to obtain comprehensive spectroscopic		
data on a range of PAH species, including pure PAHs, ionized PAHs, functionalized PAHs, and PAH clusters. Given the limited			
existing data on these clusters, the present work focuses on the investigation of the vibrational and rotational spectra of			
functionalized PAH clusters containing oxygen and nitrogen groups. We aim to explore how the introduction of various functional			
groups affects the spectral characteristics and stability of PAH clusters. Advanced computational methods will be employed to			
generate and analyze the infrared (IR) and microwave spectra of these functionalized PAH clusters, with the computed spectra			
being compared to observational data from astronomical sources.			

ASI2025_335	Shylaja B S	Poster	
Stars, I	Stars, Interstellar Medium, and Astrochemistry in Milky Way		
Search for records	of eruptions of T Coronae Borealis	in the 17th and 18th centuries	
The recurrent nova T Coronae Borealis	is expected to erupt shortly as inferre	d from recorded eruptions of 1946 and 1866 and a	
periodicity of 80 years. Schaefer, 2023	3 provided the earliest record in 1217	and another in 1787. We searched for records the	
star dials of astrolabes. The exhaustiv	e catalogue (Sarma, 2023) provides c	letails on the star dials along with unidentified and	
misidentified stars. We were able to ze	misidentified stars. We were able to zero in on four astrolabes; however, two of them serve as possible records. There are many		
doubtful identifications on star globes as well. The difficulties associated with this unconventional source of star lists and			
overcoming the disadvantages of poor resolution are discussed. The results point to one eruption just before 1641 and another			
of 18th century. References: Sarma S., 'A Descriptive Catalogue of Indian Astronomical Instruments', (2023) online			
https://srsarma.in/catalogue.php Schaefer, B. A., "The B & V light curves for recurrent nova T CrB from 1842–2022, the unique			
pre- and post-eruption high-states, the complex period changes, and the upcoming eruption in 2025.5 ±1.3", Monthly Notices			
of the Royal Astronomical Society, (2023), Volume 524, Pages 3146-65			

ASI2025_615	SMRUTI SASWATA HOTA	Poster
Stars, Interstellar Medium, and Astrochemistry in Milky Way		
Transien	t nature study of classical Be stars	s using Hα variability
Study of classical Be (Be) stars prov	ide a unique opportunity to investiga	te circumstellar discs since their spectra display
emission lines of different elements	hat originate from the surrounding ۽	gaseous, equatorial discs of these massive main-
sequence B-type stars. A distinctive p	roperty of almost all Be stars is variab	ility in their emission line profiles. In extreme cases
this leads to the complete loss of the	r discs, thereby giving such stars an	appearance of a normal standard B-type star. This
'transient nature' of certain Be stars ca	n be tracked through continuous mon	itoring of their $\ensuremath{\text{H}\alpha}$ line profile variability. The existing
literature shows that any acceptable	consensus regarding the disc formati	on and dissipation timescales for Be stars has not
arrived yet. So Banerjee et al. (2022) p	performed such a study for 9 transien	t Be stars and further extended the study to start a
continuous monitoring program of a la	arger sample of such Be stars using t	he 1-m CZT facility at VBO, Kavalur. In this work, I
performed thorough literature survey to identify more such interesting Be stars that have shown transient nature at least once in		
their lifetime taking data from Barnsley & Steele (2013) who presented the Ha line profile variability for 55 Northern Be stars.		
Looking through existing literature, we identified 19 among these 55 stars have shown transient nature in the past at least once,		
thus increasing the sample size of the present monitoring program considerably. Our study also detected that while one star HD		
170682 might have shown a disc loss and formation episode within around two years during 1998 to 2000, another star, HD		
171406 might have passed through a cycle of disc-loss to disc formation followed by again disc dissipation episodes within a		
timescale of two decades from 1998 to 2020.		

ASI2025_405	Snigdha Sarmah	Poster
Stars, I	nterstellar Medium, and Astrocher	nistry in Milky Way
Probing Stellar V	ariability in Spitzer Bands: Insights	into Type II SNe Progenitors
This work investigates the variabi	lity of Type II SN progenitors usi	ng mid-infrared data from the Spitzer Space
Telescope's IRAC channels, providing insights into the late stages of massive star evolution. A sample of SNe, all		
located within 15 Mpc and having exploded in the last decade, was chosen based on pre-explosion IRAC		
observations covering several epochs. Photometric techniques were applied to extract light curves of the progenitor		
stars, enabling a detailed analysis of their variability over time. The Lomb-Scargle periodogram was employed to		
search for periodic signals, revealing possible pulsational behavior in the progenitors. Additionally, the post-		
explosion light curves for a few of these SNe were examined, offering a comparative look at the progenitors before		
and after the explosions.		

ASI2025_170	Subharthi Dasgupta	Poster	
Stars, I	Stars, Interstellar Medium, and Astrochemistry in Milky Way		
On the origin of mu	ltiperiodic variability in B-type sup	ergiant Epsilon Ori (HD 37128)	
B-supergiants exhibit significant ph	notometric and spectroscopic varia	abilities. Their origin is not fully understood but	
pulsation has been suggested as a	possible cause . HD 37128 (Epsilo	n Orionis) is a very luminous B-type supergiant	
located in the constellation Orion. T	he variability of this star has been o	bserved across several wavelengths; however	
it has been most extensively studie	ed in the optical domain. In several	studies, the star has been observed to exhibit	
line profile variations in both pho-	tospheric and wind lines with pe	riods of the order of a few days. In order to	
understand the origin of these varia	understand the origin of these variabilities, we have constructed models of HD 37128 in the mass range of 30 to 70		
solar mass and performed non-adiabatic linear stability analysis. Low order radial modes are found to be unstable			
in the considered models. Mode interactions are present in models having mass below 36 solar mass which is an			
indication for the presence of strange mode instabilities. From the linear stability analysis, we deduce that the			
determined periods are consistent with observed periods. Nonlinear numerical simulations in the considered			
models with mass greater than 50 solar mass lead to finite amplitude pulsations with periods in the range of 1 to 3			
days. The presence of multiperiodic variability together with mass-loss in HD 37128 makes it a suitable candidate			
for asteroseismic analysis and to study the connection between pulsation and mass-loss.			

ASI2025_548	Sugyan Parida	Poster
Stars, I	nterstellar Medium, and Astrocher	nistry in Milky Way
On the s	stability and pulsation in models of	B[e] star MWC 137
B[e] type stars are characterized by	strong emission lines, photometri	c, and spectroscopic variabilities and unsteady
mass-loss rates. MWC 137 is a g	alactic B[e] type star situated in	the constellation Orion. Recent photometric
observation of MWC 137 by TESS	S has revealed variabilities with a	dominant period of 1.9 d. The origin of this
variability is not known but suspe	ected to be from stellar pulsation	. To understand the nature and origin of this
variability, we have constructed three different set of models of MWC 137 and performed non-adiabatic linear		
stability analysis. Several low order modes are found to be unstable in which models having mass in the range of 31–		
34 MO and 43–46 MO have period close to 1.9 d. The evolution of instabilities in the non-linear regime for model		
having solar chemical composition and mass of 45 M \odot leads to finite amplitude pulsation with a period of 1.9 d.		
Therefore, in the present study we confirm that this variability in MWC 137 is due to pulsation. Evolutionary tracks		
passing through the location of MWC 137 in the Hertzsprung–Russell diagram indicate that the star is either in post		
main sequence evolutionary phase or about to enter in this evolutionary phase.		

ASI2025_319	SUJAY JADHAV	Poster
Stars, I	nterstellar Medium, and Astrocher	nistry in Milky Way
	Characterizing H ₂ O in IPA sources	using JWST
A central question in contemporary as	trophysics is how material within gala	axies transforms into stars and planetary systems.
This process begins with the collaps	e of molecular cloud cores under s	elf-gravity, triggering star formation, while planet
formation arises as a secondary outco	me. Water is a key ingredient for life a	s we know it, and plays a crucial role in the earliest
stages of star formation - specifically, t	he protostellar phase. In both its gase	ous and solid phases, water influences the thermal
balance, chemistry, and dynamics of th	ne protostellar environment, acting as	a critical coolant and a tracer of physical processes
in the dense regions where stars take s	shape. We examine the presence of $ imes$	I_2O in the five JWST - IPA (Investigating Protostellar
Accretion) sources with a broad range of masses (0.1 - 12 solar masses), luminosities (0.1 - 10,000 solar luminosities), and		
distances (150 pc - 1.6 kpc). Observations in the JWST MIRI wavelength range of 5 - 28 microns reveal H_2O in the fundamental		
ro-vibrational band (010 - 000) at 5 - 8 microns across all sources. Thanks to JWST's exceptional spatial resolution, we identify		
an extended outflow pattern, both in emission and absorption, in the two most luminous sources - HOPS 370 and IRAS 20126.		
This pattern is barely detected in the other three less luminous sources which is strongly indicative of a non-collisional excitation		
mechanism. JWST's unprecedented sensitivity and resolution provide valuable insights into the kinematics and dynamics of		
these H_2O lines, shedding new light on star formation processes. We aim to discuss our results in this talk.		

ASI2025_507	Vasudha Choudhary	Poster	
Stars, I	Stars, Interstellar Medium, and Astrochemistry in Milky Way		
A comparat	tive study of SN2023ixf from early	to late nebular phases.	
We present a spectroscopic study of t	ype II supernova SN 2023ixf, tracing i	ts evolution into the very late nebular stages. Initial	
theoretical models and immediate pos	st-explosion spectra proposed that th	e progenitor star underwent substantial mass loss	
before the supernova explosion; how	vever, subsequent analyses categor	ized SN 2023ixf as a typical Type II supernova,	
prompting further investigation into its	s characteristics. Besides the evolvin	g profiles of the Balmer lines, indicating the initial	
influence of CSM, our observations rev	eal other significant spectral features	, including the emergence of multiple metal lines in	
the very late nebular spectrum, whose profiles reveal the progenitor interior and dynamics of the explosion. By comparing SN			
2023ixf with the well-documented Type II supernovae SN 2017eaw and SN 2017gmr, we aim to investigate how variations in			
progenitor environments and mass loss affect spectral properties throughout different evolutionary stages. The possibility of			
late-time shock-CSM interaction is investigated. Our findings aim to bridge gaps in the current literature regarding the long-term			
behavior of Type II supernovae.			

		_	
ASI2025_45	Venkata Lakshmi	Poster	
Stars, I	nterstellar Medium, and Astrocher	nistry in Milky Way	
Theoretical anharmonic infrare	d and ultraviolet spectroscopic st	udy of interstellar PAHs upto ten hexagons	
The present study reports a compariso	on of theoretical harmonic and anharr	nonic infrared and optical absorption spectra of 01	
to 10 hexagons PAHs in their neutral a	nd ionic states with observations. The	PAHs (polycyclic aromatic hydrocarbons) which is	
the most abundant and play an import	ant role in the physics and chemistry o	of the astronomical environment. They are primarily	
responsible for the aromatic infrared b	oands (AIBs) observed in various regio	ns of the interstellar medium (ISM). This study will	
be focus is on identifying the potential	carriers of the AIBs and understanding	their significance in the 217.5 nm astronomical UV	
bump. The 01 to 10 hexagon structural	bump. The 01 to 10 hexagon structural arrangements are considered in cata- and peri-condensed form. All these structures are		
optimized at the B3LYP/6-311++G (d) level of theory to confirm the lowest energy structure. The analysis of harmonic to			
anharmonic vibrational spectra computations results in minor changes in PAH MIR spectral characteristics. We use the			
advanced capability of MIRI JWST telescopes to obtain observational data for the comparison. This study gives the			
understanding of the physical and chemical processes of cosmic dust and PAHs in diverse astronomical environments. We have			
also compared the UV bump features at 217.5 nm with the obtained electronic absorption spectra of 01 to 10 hexagons in their			
neutral and their ionic states using time-dependent density functional theory (TDDFT) at the same level of theory.			

Posters in High Energy Phenomena, Fundamental Physics and Astronomy

ASI2025_79	Abhijnan Kar	Poster	
High Energy Phenomena, Fundamental Physics and Astronomy			
Evolution of neutron star spin freq	uency and other parameters in LM	XBs and its implications for observed AMXPs.	
A low mass X ray binary system (I	_MXBs) has neutron star (NS) acc	reting matter from the companion/donor star	
which causes the NS to spin fast ar	nd become millisecond pulsars (M	SPs). These LMXBs and MSPs hosted there are	
excellent tool to probe fundament	al physics of NS and for that purp	ose detailed theoretical modelling is required.	
Here, we use numerical stellar e	evolution code MESA and system	natically compute NS parameters' evolution	
including its spin frequency. With	computations using a range of ini	tial parameter values, we predict the general	
trajectory of the NS spin frequency	evolution, which is governed by va	arious initial binary and stellar parameters. We	
show how the evolutionary trajec	tories depend on these initial pa	rameter variation in order to produce LMXB	
constraints. Further, using our ge	neral evolution results, we indicate	ate the formation channels and evolutionary	
scenario for few AMXPs by exactly	y matching with current observation	onal parameters of NS spin frequency, orbital	
period etc. We also indicate plausi	period etc. We also indicate plausible evolutionary scenario and initial parameter space for other AMXPs and try to		
model spin frequency of these systems for the first time. Further, we discuss current challenges with our general			
evolution models to predict initial parameter space for some AMXPs in late-stage evolution. Reference: Abhijnan			
Kar, Pulkit Ojha, Sudip Bhattacharyya, Long-term evolution of spin and other properties of neutron star low-mass X-			
ray binaries: Implications for millisecond X-ray pulsars, MNRAS, Volume 535, Issue 1, November 2024, Pages 344–			
358, 2024; https://doi.org/10.1093/mnras/stae2346			

ASI2025_620	Abhiram K	Poster	
High Ene	High Energy Phenomena, Fundamental Physics and Astronomy		
Automatic Classification an	d Anomaly Detection of Supernov	a Spectra in ZTF Bright Transient Survey	
The Zwicky Transient Facility (ZTF) Bright Transient Survey (BTS) re	presents a significant effort in identifying and	
characterizing extragalactic transie	ents through a comprehensive and	unbiased spectroscopic approach. One of the	
primary missions is to acquire	optical spectra to classify extra	galactic transients, including subclasses of	
Supernovae and Tidal Disruption	Events (TDEs). We develop an au	utomatic supernovae classification tool using	
machine learning by designing a se	ries of binary classifiers to classify	different types of supernovae using ensemble	
classifiers, primarily the Random	classifiers, primarily the Random Forest Classifier and XGBoost Classifier. A hierarchical tree classifier is also		
designed by chaining various binary	designed by chaining various binary classifiers to achieve multi-class classification of different supernova subtypes.		
Furthermore, the extensive collection of spectra from the survey and the community would allow the detection of			
rare and new classes of transients that can deepen our understanding of the evolution of stars and activities of			
supermassive black holes. We employ an unsupervised Isolation Forest algorithm and various dimensionality			
reduction techniques to identify these novel, unusual events through spectroscopy. This approach allows for the			
detection of significant anomalies, potentially revealing rare and extraordinary supernovae within the dataset. Future			
surveys, such as 4MOST, DESI-II, and MSE, promise to expand the transient dataset significantly, making manual			
inspection impractical. Automated, robust classification pipelines, such as those developed in this work, will be			
essential for managing and fully utilizing these unprecedented datasets.			

ASI2025_231	AJITH BALU	Poster	
High Ene	rgy Phenomena, Fundamental Phy	vsics and Astronomy	
Study of X-ray absorption charac	teristics of high-mass X-ray binarie	es in different intensity levels with MAXI/GSC	
High-mass X-ray binaries (HMXBs)	are luminous X-ray sources that e	nit electromagnetic radiation by gravitationally	
accreting matter from its companie	on star. The X-ray, originating near	the NS, can get absorbed/reprocessed by the	
environment, especially the stellar	wind of the companion star. An a	all-sky monitor such as MAXI/GSC, which has	
been in operation for over a decade	, has significant sensitivity to study	the long-term characteristics of HMXBs. Such	
sources can also exhibit period	ic and aperiodic intensity variat	ions. We performed orbital-phase-resolved	
spectroscopy for both the intens	ity-averaged and intensity-resolv	ed data to explore any intensity-dependent	
characteristics of the source. Any	characteristics of the source. Any orbital-phase-dependent spectral characteristics found in the long-term data of		
MAXI/GSC must be persistent in the binary system. For Cen X-3, we found clear asymmetric variation in			
photoelectric absorption, with res	photoelectric absorption, with respect to mid-phase (ϕ orb = 0.5), across the orbit of the source. Asymmetric		
absorption features cannot originate from a symmetric stellar wind. The absorption column density is a tracer of			
binary matter distribution, so any asymmetry should result from an asymmetric distribution of matter in the binary			
system. While the matter distribution is more symmetric at higher intensity levels, we find that the asymmetry in			
matter distribution is most pronounced for the lowest intensity level of Cen X-3. The differences in the orbital-phase-p			
$dependence \ of \ absorption \ for \ different \ intensity \ levels \ suggest \ the \ presence \ of \ asymmetric \ features \ like \ an \ accretion$			
wake, photoionization wake, or tidal stream, which are most prominent at the lowest intensity level for Centaurus X-			
3. We will also discuss results from a similar study carried out in another HMXB called SMC X-1.			

ASI2025_409	Aman Upadhyay	Poster	
High Ene	High Energy Phenomena, Fundamental Physics and Astronomy		
Spectral variat	pility between flaring and non-flarin	ng spectra in ULX M74 X-1	
We conducted an extensive long-te	erm spectral and timing study on t	he Ultraluminous X-ray source M74 X-1, using	
data taken between 2001 and 20	021 by Chandra and XMM-Newt	on X-ray observatories. Our analysis reveals	
variations in the presence of flare	es across different observations.	Flaring observations exhibit two-component	
spectra at a lower average flux lev	vel. On the other hand, the non-f	laring observations display single-component	
spectra at a higher average flux lev	el. These spectra are best describ	ed by the diskbb+comptt, diskbb+diskbb, and	
diskpbb models. With the diskbb+	diskpbb models. With the diskbb+comptt model, we obtain a low plasma temperature (Te ~ 2.0 keV) and a high		
optical depth of the corona, typical of ULXs, in contrast with the high temperature and low optical depth seen in			
Galactic Black Hole Binaries. Using the diskbb + diskbb model, we get cool and hot temperatures of Tin(cool) =			
0.38^{+0.08}_{-0.06} keV and Tin(hot) = 1.67^{+0.18}_{-0.13} keV, respectively, suggesting two temperature			
emitting regions indicating possible presence of outflowing wind along with the accretion disk. We found a Gaussian			
feature at E_{line} = 0.96^{+0.05}_{-0.11} keV with sigma = 0.11^{+0.13}_{-0.06} keV in flaring observations,			
indicative of powerful optically thick outflows, which is not significant in non-flaring observations. This variation can			
be explained by changes in wind funnel geometry with the accretion rate. Additionally, using the hot diskbb			
component from the diskbb + diskbb model, we estimate the mass of the compact object to be M = $7.1^{+1.4}_{-}$			
1.3} Mo, classifying it as a stellar-mass black hole and confirming super-Eddington accretion in the system.			

ASI2025_410	Aman Kaushik	Poster
High Energy Phenomena, Fundamental Physics and Astronomy		
The 2022 outburst of SAX J1808.4–3658.		

Accretion powered millisecond pulsars (AMXPs) are fast rotating neutron stars orbiting in binary systems and are believed to be the predecessors of radio millisecond pulsars. The intriguing observation of rapidly spinning radio pulsars with weak magnetic fields ($\sim 10^{8}$ G) in the 1980s prompted the hypothesis that these are "recycled" pulsars. This theory of "recycling scenario" was confirmed with the observation of an actively accreting millisecond pulsar in a binary system, namely SAX J1808.4-3658. We investigate the spectral and timing properties of SAX J1808.4–3658 during its 2022 outburst using the observations with NICER and AstroSat. Our spectral modelling suggests that the emission from the source can be well described by a combination of multicolour blackbody disk and thermal Comptonization by a cloud of hot electrons. Studying the evolution of the spectral parameters showed that covering fraction and photon index (Γ) were degenerate. Additionally, the evolution of disk and corona flux showed that majority of the estimated flux is provided by the disk but at higher energies corona flux dominates. The aperiodic timing analysis hinted at the presence of two broad components with characteristic frequencies varying within 0.63 ± 0.02 to 1.40 ± 0.08 Hz and from 9.22 ± 1.58 to 51.27 ± 22.98 Hz as the source evolves during the outburst. We assume that these high frequency fluctuations are caused by the corona. We also observe that 1.5-10.0 keV energy band lags behind the 0.5–1.5 keV band (hard lag) by a few milliseconds for 0–2 Hz frequency range and almost no lag for 10–100 Hz frequency range, indicating that the low energy and low frequency fluctuations from the disk are propagating into the corona and are getting up-scattered into higher energies. We will describe the evolution of the system connecting it with our spectral and timing results, (Kaushik et al. 2024 in prep).

ASI2025_719	Amar Deo Chandra	Poster	
High Ene	rgy Phenomena, Fundamental Phy	vsics and Astronomy	
Long-term spin-dowr	n and low luminosity regime in the	Be/X-ray binary pulsar GX 304-1	
We carry out timing and spectral s	tudies of the Be/X-ray binary pul	sar GX 304-1 using NuStar and XMM-Newton	
observations. We construct the lor	g-term spin period evolution of th	e pulsar which changes from a long-term spin-	
up to a long-term spin-down trend	during a low luminosity state (~ \sim	10^(34–35) erg/s). A prolonged low luminosity	
regime (L_X~ 10^(34–35) erg/s) w	as detected during 2005-2010 ar	nd spanning nearly five years since December	
2018. The XMM-Newton and NuSt	2018. The XMM-Newton and NuStar spectra can be described with a power law plus blackbody model having an		
estimated luminosity of $\sim\!2.5\times$ 10^33 erg/s and $\sim\!3.6\times$ 10^33 erg/s respectively. The inferred radius of the blackbody			
emission is about 100-110 m which suggests a polar-cap origin of this component. From long-term ultraviolet			
observations of the companion star, an increase in the ultraviolet signatures is detected preceding the X-ray			
outbursts. The spectral energy distribution of the companion star is constructed which provides a clue of possible			
UV excess when X-ray outbursts were detected from the neutron star compared to the quiescent phase. We explore			
plausible mechanisms to explain the long-term spin-down and extended low luminosity manifestation in this pulsar.			
We find that sustained accretion from a cold disc may explain the prolonged low luminosity state of the pulsar since			
December 2018 but the pulsar was undergoing normal accretion during the low luminosity period spanning 2005-			
2010.			

ASI2025_586	Amit Kumar	Poster
High Energy Phenomena, Fundamental Physics and Astronomy		
Exploring Origin of Ultra-Long Gamma-ray Bursts: Lessons from GRB 221009A		

The brightest Gamma-ray burst (GRB) ever, GRB 221009A, displays ultra-long GRB (ULGRB) characteristics, with a prompt emission duration exceeding 1000 s. To constrain the origin and central engine of this unique burst, we analyze its prompt and afterglow characteristics and compare them to the established set of similar GRBs. To achieve this, we statistically examine a nearly complete sample of \swift-detected GRBs with measured redshifts. Categorizing the sample to Bronze, Silver, and Gold by fitting a Gaussian function to the log-normal of \tninty duration distribution and considering three sub-samples respectively to 1, 2, and 3 times of the standard deviation to the mean value. GRB 221009A falls into the Gold sub-sample. Our analysis of prompt emission and afterglow characteristics aims to identify trends between the three burst groups. Notably, the Gold sub-sample (a higher likelihood of being ULGRB candidates) suggests a collapsar scenario with a hyper-accreting black hole as a potential central engine, while a few GRBs (GRB 060218, GRB 091024A, and GRB 100316D) in our Gold sub-sample favour a magnetar. Late-time near-IR (NIR) observations from 3.6m Devasthal Optical Telescope (DOT) rule out the presence of any bright supernova associated with GRB 221009A in the Gold sub-sample. To further constrain the physical properties of ULGRB progenitors, we employ the tool MESA to simulate the evolution of low-metallicity massive stars with different initial rotations. The outcomes suggest that rotating (Omega > 0.2 Omega_{c}) massive stars could potentially be the progenitors of ULGRBs within the considered parameters and initial inputs to MESA.

ASI2025_157	Anirban Dasgupta	Poster	
High Energy Phenomena, Fundamental Physics and Astronomy			
Constraining Einstein-Maxwell-I	Dilaton-Axion Gravity from observe	ed quasi periodic oscillations in black holes.	
The general theory of relativity (G	R) has fundamentally transforme	d our understanding of spacetime, offering a	
profound framework to describe	e gravitational interactions. Thre	ough its exceptional predictive power and	
mathematical elegance, GR has e	explained diverse phenomena, fro	om planetary orbits to the bending of light by	
massive bodies. However, the	theory encounters notable chal	lenges, especially in addressing spacetime	
singularities—regions where physic	cal laws cease to apply—and in acc	counting for the universe's "dark sector," which	
comprises dark matter and dark e	nergy. Such limitations prompt the	e exploration of alternative theories of gravity.	
Among these, the string-inspired E	instein-Maxwell-dilaton-axion (EM	1DA) framework is particularly intriguing due to	
its pivotal role in both inflationary	cosmology and the accelerated ex	pansion of the current universe. In this study,	
we explore the charged, rotating k	Kerr-Sen black hole solution within	n the EMDA framework. Unlike the Kerr black	
holes predicted by GR, Kerr-Sen bl	ack holes possess a unique non-z	ero dilaton charge, introducing novel dynamics	
that could potentially align with o	bserved astrophysical phenomen	a. To investigate this further, we utilize high-	
frequency quasi-periodic oscillatio	frequency quasi-periodic oscillations (HFPQOs) detected in five prominent black hole sources—GRO J1655-40, XTE		
J1550-564, GRS 1915+105, H 143	J1550-564, GRS 1915+105, H 143+322, and Sgr A*. We evaluate eleven distinct HFPQO models, comparing their		
predictions for QPO frequencies with observational data to assess whether these black holes exhibit a non-vanishing			
dilaton charge. This approach allows us to place constraints on the dilaton charge for each model, potentially			
signaling deviations from GR. This investigation into the Kerr-Sen solution not only aids in exploring the EMDA			
theory's relevance to astrophysics but also provides a promising avenue for addressing foundational issues in GR.			
Our findings have the potential to offer new perspectives on black hole physics and spacetime structure, contributing			
to the broader search for a more comprehensive theory of gravity.			

ASI2025_254	Anirban Saha	Poster	
High Ene	High Energy Phenomena, Fundamental Physics and Astronomy		
Relativistic strange	stars in f(R,T) gravity admitting a d	ensity dependent B- parameter	
The article elucidates a spherically	symmetric and isotropic model of a	a strange star within the framework of the $f(R,T)$	
theory of gravity. In this formalism,	the function f(R,T) is assumed to b	e a linear function of the Ricci scalar R and the	
trace of the energy-momentum te	trace of the energy-momentum tensor T i.e. f(R,T)=R+2\$\beta\$T, where, \$\beta\$ is the coupling parameter. To		
acquire a solution of the field equation, the element \$g_{rr}\$ of the metric potential has been assumed to conform			
to the Tolman-IV type ansatz. The MIT bag model equation of state with a density-dependent B-parameter has been			
employed to describe the interior matter of the strange star. With the aid of the solution, the physical properties of			
several potential strange star candidates have been investigated. The radii of compact objects have also been			
predicted from the condition that pressure vanishes at the boundary of a compact object. The maximum mass of a			
strange star has been attained by numerically solving the TOV equation, which is as high as 3.51 M_{\odot}			
assuming the B-parameter as a density-dependent one. The variation of energy per baryon with energy density			
indicates that the compact objects may have a 3-layered structure in which the core is composed of stable strange			

indicates that the compact objects may have a 3-layered structure in which the core is composed of stable strange quark matter. The outer layer is made of unstable quark matter supported by an intermediate thin layer of metastable quark matter. The validity of the stellar model has been verified through different stability criteria.

ASI2025_443	ANKAN ROY	Poster	
High Ene	High Energy Phenomena, Fundamental Physics and Astronomy		
TeV gamma-rays from photo-disintegration/de-excitation of nuclei in LHAASO J0621+3755			
Very high-energy (VHE) gamma rays are traditionally attributed to two well-known mechanism, purely			
electromagnetic (EM) synchrotron emission and inverse Compton scattering or hadronic processes such as pion			
production. They can be also generated through photo-disintegration followed by photo-excitation of daughter nuclei			
as earlier predicted by Luis A. Anchordoqui and John F. Beacom. This mechanism has been identified as a potential			

production channel for observed VHE photon events in the Halo J0621 + 3755, associated with the pulsar PSR J0622 + 3749. A unique feature of this process is the production of gamma rays in the energy range of 1 TeV to 100 TeV. Recently, observations from the Large High Altitude Air Shower Observatory (LHAASO) - Kilometres Square Array (KM2A) and the High Altitude Water Cherenkov Observatory (HAWC) have reported photon events in the energy range 10 TeV to 200 TeV and 1 TeV to 10 TeV respectively. With the extended emission of gamma rays from LHAASO J0621 + 3755 Halo, the photon counts follow our model with a spectral index value of 2.32. As the pulsar J0622 + 3749 is a Geminga-like pulsar, assuming the interstellar medium photon temperature akin to the Geminga pulsar, our model's P-value, calculated with best-fit parameter, is greater than 0.43, confirming its validity. Additionally, our analysis demonstrates the model's stability across various nuclei types. This work underscores the importance of photo-disintegration and photo-excitation processes in gamma ray astronomy, offering a novel perspective on VHE gamma ray generation in PWNe and Halos.

ASI2025_701	Anshika Gupta	Poster
High Energy Phenomena, Fundamental Physics and Astronomy		
The multi-wavelength evolution of GBB 190829A		

Gamma Ray Bursts (GRBs) are one of the most energetic cosmic explosions in the Universe. A significant number of GRBs have afterglow detections in X-ray and optical bands, but for only about \sim 30% of the GRBs, radio afterglows have been detected. The early evolution of radio afterglows (below 4 GHz) is through the optically thick regime. Therefore, the light curve peak corresponds to the transition from an optically thick to a thin regime. Hence, radio frequencies are unique in probing the evolution of the self-absorption frequency (va), which in turn can constrain the physical parameters. The long-duration GRB 190829 (z=0.0785) was the third GRB for which the H.E.S.S. observatory detected very high energy (VHE) photons. The Gamma Ray Burst (GBM) instrument on the Fermi mission detected the burst. The Large Area Telescope (LAT) onboard Fermi also detected the high-energy photons from the GRB. Due to the vicinity of the GRB, it was observed extensively with several telescopes and thus has a rich multiwavelength afterglow data spanning across optical, X-ray, and radio wavelengths. At low radio frequencies (below 1.4 GHz), the afterglow was detected and observed by the upgraded Giant Meterwave Radio Telescope (u-GMRT) in Khodad, NCRA, Pune. Between 400 and 1300 MHz, the afterglow was observed at several epochs, from nearly 3 days to 200 days after the burst. The afterglow was also observed at higher frequencies, like 15.5 GHz, with the Arcminute Microkelvin Imager (AMI) telescope. The presence of the reverse shock component can be observed in the AMI light curves. The rise to the peak is noticed in both the high and low-frequency radio light curves. Combining the multi-wavelength dataset, we performed the afterglow modeling, which allowed us to put constraints on the ambient medium density, collimation angle, shock microphysical parameters, and kinetic energy of the burst.

ASI2025_186	Anurag Bhaisare	Poster	
High Ene	High Energy Phenomena, Fundamental Physics and Astronomy		
Reconstruction of co	mpact binary sources in a networ	k of gravitational wave detectors	
Gravitational waves are the ripples in the space-time fabric that occur due to the inspiral merging of compact binary			
objects. Laser Interferometer Gravitational-wave Observatory (LIGO) detects these waves and records the data that			
contains glitches and noise with a gravitational wave signal. Glitches do affect the parameters of sources having			
gravitational wave signals. The technique that will be used is known as "regularised maximum likelihood" which will			
help to reduce the effects of glitches on the Bayesian inference. This thesis aims to provide a good estimation of the			
parameter distribution of compact binary sources by neglecting such glitches.			

ASI2025_355	Archana Singh	Poster	
High Ene	High Energy Phenomena, Fundamental Physics and Astronomy		
Study of Anti-Correlated	d Optical Polarization and Flux Var	iability in the Blazar 1ES 1959+650	
Blazars are characterized to exhibit	t non-thermal variable emission ov	er entire electromagnetic spectrum from radio	
to very high energy gamma rays. The	e optical emission from these sour	ces shows strong linear polarization along with	
a significant variability over differ	rent time scales. In this work, w	ve report results from the long term optical	
observations of the blazar 1ES1959+650 using over a decade data from the Steward Observatory. The degree of			
linear polarization measured in the	linear polarization measured in the wavelength range 500 nm to 700 nm is highly variable with a fractional variability		
amplitude of ~39% during the whole period. The polarization angle is found to change randomly with a mean value			
of ~144 degree. The photometry data in V and R bands are found to be less variable and show an anti-correlation			
with the degree of linear polarization during few epochs. Results from this study indicate synchrotron emission			
produced by a power law distribution of relativistic electrons gyrating in a spherical region permeated with chaotic			
and ordered magnetic fields.			

ASI2025_123	Aryabrat Mahapatra	Poster	
High Ene	rgy Phenomena, Fundamental Phy	vsics and Astronomy	
Partial tidal disruption of White D	Owarfs in off-equatorial planes aro	und intermediate mass spinning black holes	
We present the results of a suite of	of numerical simulations to study	partial tidal disruption events (TDEs) of white	
dwarfs (WDs) in off-equatorial pla	nes in intermediate mass spinning	g (Kerr) black hole backgrounds. We carry out	
this analysis for both parabolic and eccentric WD orbits and also take into account possible initial WD spins. Our			
objective here is to quantify the differences in variables like the mass of the self-bound core, the peak fallback rate			
of debris and gravitational wave sig	of debris and gravitational wave signature in off-equatorial orbits compared to equatorial ones. The analysis is carried		
out using a hybrid numerical scheme, one which involves integrating the exact Kerr geodesics while adopting a			
Newtonian formalism for the stellar fluid dynamics, justified by our choice of simulation parameters. We find that			
the physics of TDEs in off-equatorial orbits present several interesting and novel features due to black hole spin,			
which in some cases enhances when coupled with the rotation of the WD. However, numerical values of observable $\$			
quantities in TDEs involving off-equatorial orbits cannot possibly distinguish between such orbits from equatorial			
ones. We further comment on the genericness of our results and argue that these should extend to a general TDE			
scenario involving a spinning BH.			

ASI2025_715	Aswin Nair	Poster	
High Ene	rgy Phenomena, Fundamental Phy	rsics and Astronomy	
Numerical Sim	ulation of accretion onto compact	objects with hard surface	
Accretion onto a weakly magnetize	d compact object is studied analy	tically as well as numerically. We use pseudo-	
Newtonian potential to mimic stro	Newtonian potential to mimic strong gravity. Relativistically correct Chattopadhyay-Ryu (CR) equation of state is		
used to describe the thermodynam	used to describe the thermodynamics of the relativistic gas. We analytically derive the conditions which demarcate		
accretion onto a compact object w	accretion onto a compact object with and without a hard surface. We then regenerate these solutions numerically		
and at the same time ensuring the formation of a steady terminal shock close to the surface of the star. It is expected			
that if the flow is transonic then at least one terminal shock will form, but can additional shocks form? We are going			
to investigate that in case additional shocks do form, then what would be the observational signature of these			
shocks.			

ASI2025_32	Athira S	Poster	
High Ene	rgy Phenomena, Fundamental Phy	/sics and Astronomy	
Kaonic dense	matter inside stellar compact obj	ect from SU(3) symmetry	
Observations of massive pulsars	suggest that the central densitie	es of compact stars can far exceed nuclear	
saturation density, potentially form	saturation density, potentially forming exotic matter like hyperons, meson condensates, and quark matter. Anti-kaon		
(\$K^-\$) condensation, a key candidate among meson condensates, is not fully understood in terms of kaon-meson			
interactions. Using SU(3) flavor symmetry, we calculate hadronic couplings in the mesonic sector, refining earlier			
quark model approaches. Key parameters—mixing angle (\$\theta_v\$), octet-to-singlet coupling ratio (\$z\$), and			
$symmetric-antisymmetric weight factor (\$\alpha_v\$) - are determined, with \$\alpha_v\$ treated as a free parameter.$			
Our results show that higher $\lambda = v$ values stiffen the equation of state, delay K^- condensation, and increase			
neutron star masses. \$K^-\$ condensation occurs via a second-order phase transition, with its onset highly sensitive			
to \$\alpha_v\$.			

ASI2025_199	Athira Nandakumar	Poster	
High Ene	High Energy Phenomena, Fundamental Physics and Astronomy		
Powering Me	chanism of the Ultraluminous X-ra	ay Source NGC 4395 X-1	
Ultra-luminous X-ray sources (ULXs)	are off-nuclear sources having unus	ual luminosity in X- rays, nearly or higher than the	
Eddington limit. Though they have been	n studied extensively using data from	different observatories, their powering mechanism	
is still a topic of debate. It is believed	that stellar mass black holes (BHs) a	ccreting in the super-Eddington limit, intermediate	
mass BHs accreting in the sub-Edding	mass BHs accreting in the sub-Eddington regime or accreting in the super-Eddington regime with lower accretion efficiency can		
power such systems. In this work, we	power such systems. In this work, we studied X-ray spectral variability of the ULX NGC 4395 X-1 using two decades of XMM-		
Newton observations from 2002 to 2022. It is one of the nearest ULXs detected outside our Galaxy at a distance of ~5 Mpc. The			
X-ray luminosity of this source is (1-3)	X-ray luminosity of this source is (1-3)x10^39 erg/s. This source also exhibited variability and X-ray flaring activities over time.		
All available spectra of the source are fitted using both phenomenological and physical models. Investigating these variability			
properties of NGC 4395 X-1 provided us with valuable insights into the dynamics of accretion and the central compact object.			
In this poster presentation, I will discuss the progress of the work in understanding the powering mechanism and the intrinsic			
properties of the central black hole fro	m different model fitted parameters.		

ASI2025_156	Atul Pathania	Poster	
High Ene	rgy Phenomena, Fundamental Phy	vsics and Astronomy	
Identification of gamma-ray puls	ar candidates among the unassoc	iated sources in the Fermi-LAT catalog using	
	Random Forest		
More than 7100 high-energy gamma-r	More than 7100 high-energy gamma-ray sources are reported in the 4th Fermi-LAT catalogue (4FGL-DR4) using 14 years of all		
sky observations. However, exact as	sky observations. However, exact astrophysical nature of a significant fraction (~34%) of these sources remains largely		
unknown and group of such astrophy	unknown and group of such astrophysical objects is referred to as unassociated sources. In this work, we employ Random		
Forest based machine learning algorithm to classify the unassociated sources into two broad classes viz. pulsars and active			
galactic nuclei. This study involves feature selection, hyper-parameter optimization and finally identifying the plausible pulsars			
and active galactic nuclei candidates. Pulsars being relatively faint sources in comparison to active galactic nuclei, only ~10%			
of total discovered pulsars are high energy gamma-ray pulsars with only 4 are being detected in the very high energy range (E >			
30GeV). Hence, the predicted pulsar candidates in the present work can set a pathway for other waveband observations, which			
can finally help in increasing the number of pulsar candidates for further populations studies.			

ASI2025_19	AYON MONDAL	Poster	
High Ene	High Energy Phenomena, Fundamental Physics and Astronomy		
Spectral Energy Distribution Me	odeling of BL Lacertae During a Lar	ge Submillimeter Outburst and Low X-Ray	
	Polarization State		
In 2023 October-November, the blaza	r BL Lacertae underwent a very large	amplitude submm outburst. The usual single-zone	
leptonic model with the lower energy	y peak of the SED fit by the synchro	tron emission from one distribution of relativistic	
electrons in the jet and inverse-Compton (IC) scattering of lower energy photons from the synchrotron radiation in the jet itself			
(synchrotron self-Compton or SSC) or	those from the broad line region and	torus by the same distribution of electrons cannot	
satisfactorily fit the broadband SE	D with simultaneous data at sub	mmopticalX-rayGeV energies. Furthermore,	
simultaneous observations with IXPE	indicate the X-ray polarization is ur	detected. We consider two different synchrotron	
components, one for the high flux in the submm wavelengths and another for the data at the optical band, which are supposedly			
due to two separate distributions of electrons. In that case, the optical emission is dominated by the synchrotron radiation from			
one electron distribution while the X-rays are mostly due to SSC process by another, which may result in low polarization fraction			
due to the IC scattering. We show that such a model can fit the broadband SED satisfactorily as well as explain the low			
polarization fraction at the X-rays.			

ASI2025_268	Ayushi Shrivastava	Poster
High Energy Phenomena, Fundamental Physics and Astronomy		
A Timing study of PSR J1840+1102: The Fastest GMRT-discovered Millisecond Pulsar		

Pulsars are highly magnetised rotating neutron stars which emit beams of electromagnetic radiation, detectable in radio band as pulsations. High precision studies are required to delve into properties of pulsars. Pulsar timing is one such study which helps in precise modeling of the intrinsic properties (such as spin period, spin period derivative, etc.) as well as the binary parameters and companion properties, if the pulsar is in a binary system. Once a reliable solution from pulsar timing is established, a pulsar can also be used to test gravitational theories, study Interstellar medium and also detect gravitational waves and the stochastic gravitational wave background using the Pulsar Timing Array (PTA) experiments. We will present an initial timing solution for the fastest GMRT-discovered pulsar: PSR J1840+1102, which has a spin period of 1.6 ms and an orbital period of 1.69 days. Various parameters have been fitted iteratively using different techniques and softwares. The timing residual of around 3 microseconds was achieved after fitting the data over a span of more than 1 year. In addition to precisely estimating several of the pulsar's intrinsic parameters constrained by the timing model. The high signal-to-noise ratio of the average profile, short spin period and precise pulse arrival times make PSR J1840+1102 a promising candidate for PTA. We will present various results obtained from our timing analysis as well as an assessment on this pulsar's suitability for inclusion in the PTA experiments.

ASI2025_508	Biki Ram	Poster
High Energy Phenomena, Fundamental Physics and Astronomy		
Unveiling State Transitions and In	ner Disk-Corona Dynamics in Blac	k Hole X-ray Binaries Using Power-Color and
	QPO Analysis	
The power spectra of Black Hole	(BH) Low-Mass X-ray Binaries (LMXBs) evolve systematically across states,
influenced by the fluctuations in the	e corona and accretion disk. We us	ed an innovative power-color technique based
on the ratio of variability amplitude	e at distinct frequency ranges to es	stimate spectral states using hue, representing
angular positions on the power-col	or wheel. This method provides a p	romising alternative to the standard Hardness-
Intensity Diagram (HID) method, w	hich is often ambiguous. In this stu	udy, we analyzed the power spectra of ten BH-
LMXB sources using archival Ast	roSat data during outburst phase	es. By employing a root-mean-square (RMS)
variability versus hue analysis, we identified distinct states. Quasi-periodic oscillations (QPOs) in LMXBs provide		
valuable insights into the emission mechanisms of the inner accretion disk, constraining parameters in the strong		
field regime. We detected multiple such QPOs and associated harmonic in our sample and conducted a study of		
their energy dependence. We observed the evolution of QPO RMS spectra with both hue and QPO frequency,		
shedding light on the inner accretion disk dynamics and disk-corona geometry in various states. A notable finding		
was the detection of a sign reversal in the average QPO time lag between hard and soft photons near a QPO		
frequency of 2 Hz, concurrent with the hard to hard-intermediate state transition. Our analysis further revealed a		
change in the slope of the QPO RMS spectra around this same frequency and hue value. This observed time lag		
reversal (hard to soft) which occurs during this state transition phase is consistent with a transition from an elongated		
jet-like corona (responsible for the hard lag) to a compact corona (responsible for soft lags through reverberation)		
model. The transition frequency may signify the critical radius for Lense-Thirring precession, above which the state		
transition occurs. This study offers insights into the state evolution of BH-LMXB.		

ASI2025_296	Chandranathan Anandavijayan	Poster
High Energy Phenomena, Fundamental Physics and Astronomy		
Spectral evolution in dec	aying MHD turbulence: Implication	ns for early-universe magnetic fields
Magnetic fields are pervasive acros	ss the universe, existing even in cos	smic voids. Observations of TeV blazar spectra
in these voids indicate the presend	ce of a magnetic field of approxim	ately \$10^{-15} G\$, likely of primordial origin.
Such primordial magnetic fields ca	an significantly influence the evolu	ution of cosmic plasma, impacting processes
such as Big Bang nucleosynthesis a	nd recombination. In the early univ	erse, magnetic fields may have been generated
during inflation or phase transitions	. Their subsequent non-linear dec	ay is characterized by a decay timescale and is
constrained by a conserved quantity. It is currently agreed that this decay proceeds via magnetic reconnection. In		
ideal magnetohydrodynamics (MHD), magnetic helicity is conserved; however, in the absence of magnetic helicity,		
it cannot constrain the decay, even though it remains conserved. This has led to debate regarding the relevant		
conserved quantity in this scenario. It was proposed that conservation of magnetic helicity fluctuations is relevant,		
but our prior work critically analyzed this claim and demonstrated that conservation of anastrophy (square of the		
vector potential) is the true constraint. In this study, we analytically calculate the evolution of the magnetic spectrum		
using piecewise power laws. To validate our results, we perform numerical simulations with the pseudo-spectral		
solver DEDALUS. The resulting scaling relations confirm the true conserved quantity. This finding is significant not		
only for advancing our understanding of decaying MHD turbulence but also for early-universe physics.		

ASI2025_118	DEBADRI BHATTACHARJEE	Poster	
High Ene	rgy Phenomena, Fundamental Phy	rsics and Astronomy	
Structure a	nd stability of dark energy stars in F	Rastall theory of gravity	
The concept of dark energy offers a	promising approach to preventing	the gravitational collapse of compact objects,	
thereby avoiding the formation of	singularities. In this article, we	focus on developing a novel, singularity-free	
relativistic solution to the Einstein	field equations for dark energy sta	rs, framed within the Rastall theory of gravity.	
To examine this model, we co	nsider the Low-Mass X-ray Bin	ary (LMXB) 4U 1608-52, with a mass of	
\$1.74~M_{\odot}\$ and a radius of	f 9.3 km (T. G"uver et al., Astrop	hys. J. {\bf 712}, 964 (2010)), as a potential	
candidate for a dark energy star. T	he analysis begins with the dark ϵ	energy equation of state, in which dark energy	
density is linked to an isotropic pe	density is linked to an isotropic perfect fluid distribution through a coupling parameter, \$\alpha\$. We derive the		
induced metric and extrinsic curva	ture tensors at the star's surface to	o determine the unknown constants within the	
model. A detailed analysis is carried	d out to explore how the physical b	ehaviour of the system depends on the Rastall	
parameter, \$\xi\$. Notably, we iden	tify a possible phase transition fro	m dark energy to baryonic matter, sensitive to	
both \$\alpha\$ and \$\xi\$. Additiona	lly, we compute the proportion of c	lark energy in the model by varying \$\xi\$, while	
for a fixed \$\xi\$, the variation of dark energy percentage with stellar mass reveals a dependence on both mass and			
radius. The model satisfies causality and energy conditions, affirming its physical plausibility. Stability of the stellar			
structure is confirmed through a comprehensive stability analysis. The graphical representation of physical			
parameters and the results of the theoretical study demonstrate that the proposed model is free of singularities and			
represents a stable, realistic stella	r configuration that incorporates b	oth dark energy and baryonic matter.	

ASI2025_146	Debojit Paul	Poster	
High Ene	rgy Phenomena, Fundamental Phy	vsics and Astronomy	
Probing Modified Gravity throug	h Orbital Dynamics: From the Gala	actic Center Black Hole to the Solar System	
Orbits serve as a natural probe for t	esting gravitational theories across	various scales. By studying orbits, predictions	
of different gravitational models ca	an be tested under various conditi	ons of the gravitational potential. In this work,	
we study the stellar orbits near the	we study the stellar orbits near the Galactic Center (GC) black hole as well as the planetary orbits in the solar system		
in a modified theory of gravity. We c	develop a rotating axially symmetri	c metric within the framework of f(R)-scalaron	
gravity. The metric is subjected to a	gravity. The metric is subjected to astronomical tests near the GC black hole through stellar orbits. The predictions		
of the metric are found to be consistent with very high spin value of GC black hole and is complemented by recent			
observations. In the solar system, the theory is further tested using observational data for six planets(upto saturn) as			
well as Trans Neptunian objects(TNOs), Centaurs and Scattered Disk Objects(SDOs) orbital data. The theory is			
found to be consistent in the inner solar system but is found to deviate from general relativity towards the outer solar			
system. The cosmological implications of the theory are also highlighted. References: 1. Paul D., Bhattacharjee P.,			
Kalita S., 2024, ApJ, 964, 127 2. Paul D., Kalita S., 2024, arXiv:2406.00351 3. GRAVITY Collaboration et al. 2020,			
A&A, 636, L5 4. Kalita, S. 2018, ApJ, 855, 70			

ASI2025_527	Debojoti Kuzur	Poster	
High Ene	rgy Phenomena, Fundamental Phy	/sics and Astronomy	
-	Fopological Defects and Neutron S	Star Glitches	
Rotational irregularities are one of	the prominent observational feat	ures that most pulsars exhibit. These glitches,	
which are sudden increases in spin	angular velocity, remain an open p	problem. In this study, we have investigated the	
potential role of nontrivial topolo	ogical defects, specifically in the	e form of Nambu-goto-type cosmic strings,	
concerning spin irregularities. Suc	h cosmic strings which are one-d	limensional topological defects formed during	
various symmetry-breaking and pha	ase transition scenarios, can intera	ct with neutron stars, influencing their rotation.	
In this work, we see that the appea	rance of such topological defects	trapped within the neutron star can lead to the	
coupling of the string tension with	the angular velocity, leading to the	abrupt rotational changes observed as pulsar	
glitches. The unique tension and top	glitches. The unique tension and topology of cosmic strings, combined with the extreme spacetime curvature around		
neutron stars, offer a plausible mechanism for these spin-up events. We have further studied how these coupling			
may generate detectable gravitatio	nal waves as a mixture of continuc	ous and burst signals. The evolution of cusps of	
cosmic strings trapped within neutron stars and the neutron star's mass quadruple moment change due to rotation			
could produce distinctive gravitational wave signatures, well within the noise cutoff of advLIGO. Our study highlights			
a potential connection between topological defects, pulsar glitches, and gravitational wave emissions, offering a			
possible avenue for observationally testing the presence of cosmic strings and their astrophysical effects.			

ASI2025_710	Dhruv Jain	Poster
High Ene	rgy Phenomena, Fundamental Phy	vsics and Astronomy
Rates and Beaming Fractic	ons of Gamma Ray Bursts associat	ed with Compact Binary Coalesences
Some, if not all, binary neutron star	(BNS) coalescences, and a fraction	on of neutron - star black hole (NSBH) mergers,
are thought to produce sufficient m	ass-ejection to power Gamma-Ray	y Bursts (GRBs). However, this fraction, as well
as the distribution of beaming ang	les of BNS-associated GRBs, are	poorly constrained from observation. Recent
work applied machine learning tool	s to analyze GRB light curves obse	rved by Fermi/GBM and Swift/BAT. GRBs were
segregated into multiple distinct c	lusters, with the possibility that o	ne of them (BNS cluster) could be associated
with BNSs and another (NSBH cluster) with NSBHs. As a proof of principle, assuming that all GRBs detected by		
Fermi/GBM and Swift/BAT associated with BNSs (NSBHs) lie in the BNS (NSBH) cluster, we estimate their rates.		
We compare these rates with corresponding BNS and NSBH rates estimated by the LIGO-Virgo-Kagra (LVK)		
collaboration from the first three ol	bserving runs (O1, O2, O3). We fin	d that the BNS rates are consistent with LVK's
rate estimates, assuming a uniform	n distribution of beaming fractions	s estimated in the literature. Conversely, using
the LVK's BNS rate estimates, assuming all BNS mergers produce GRBs, we are able to constrain their beaming		
angle distribution. We similarly place limits on the fraction of GRB-Bright NSBHs with Fermi/GBM (Swift/BAT) data.		

ASI2025_46	Gunindra Krishna Mahanta	Poster
High Ene	rgy Phenomena, Fundamental Phy	vsics and Astronomy
Modeling Particle Accelerat	ion in Pulsar Wind Nebulae as a co	osmic PeVatron: A Two-Zone Approach
PeVatrons are the extreme galacti	c accelerators capable of accele	rating particles up to PeV energies. The exact
nature of PeVatrons remains unce	rtain, but the potential PeVatron o	andidates include supernova remnant, pulsar
wind nebulae, gamma-ray bubble,	microquasars and star clusters. V	Vhile the Crab Nebula being the first PeVatron
detected by LHAASO, LHAASO als	o detected nearly 40 sources at >	100 TeV energies. In this study, we develop a
two-zone model to explain acceleration of particles up to PeV energies and emission of radiation from pulsar wind		
nebula. The model considers the a	acceleration of particles at the te	mination shock of PWN and the particles are
further accelerated by second order Fermi acceleration in the nebula. Particles emit radiation through the		
synchrotron and inverse Compton processes in the nebula. This work provides constrains the parameters and		
conditions necessary for particle acceleration in PWNe to PeV levels.		

ASI2025_643	Hrishav Das	Poster
High Ene	rgy Phenomena, Fundamental Phy	vsics and Astronomy
Photometric a	nd Spectroscopic Study of Type la	x Supernova SN 2022eyw
Type lax supernovae (SNe lax), als	o known as SN 2002cx-like superr	novae, are the most diverse class of "peculiar"
thermonuclear supernovae. With o	ongoing high-cadence, deep super	mova searches, the sample size of SNe lax is
increasing, and around 100 SNe ha	ve been classified as type lax. To u	nderstand the diversity and its origin within this
class, it is important to study indivi	dual objects in detail. In this poste	er, we present results on a type lax supernova,
SN 2022eyw, hosted by an active galactic nucleus candidate, MCG+11-16-003. A detailed spectroscopic and		
photometric study of SN 2022eyw is carried out using data obtained with the Himalayan Chandra Telescope (HCT).		
SN 2022eyw is a bright SN lax with a peak g-band absolute magnitude of -17.64 ± 0.07 mag at a distance of ~ 37.15		
Mpc. Based on the observed light curves and spectra, the light curve decline rate and expansion velocity are		
estimated. An analytical fit to the bolometric light curve is used to estimate the mass of Nickel-56 synthesized during		
the explosion. These parameters provide a deeper insight into the progenitor and explosion mechanisms of these		
events. We also compare the spectra and light curves of SN 2022eyw with those of other SNe Ia and Iax to highlight		
their differences and diversity.		

ASI2025_297	Jay Kanabar	Poster
High Energy Phenomena, Fundamental Physics and Astronomy		
	w Mystery : M82X-2 and violation of	
		red in 2014 by NASA's NuSTAR telescope
		TAR observations confirmed that the M82X-2
	• •	hich explains the strange behaviour of M82X-2
and other ULX sources.		
ASI2025_655	Jyotishree Hota	Poster
High Ene	rgy Phenomena, Fundamental Phy	/sics and Astronomy
Mult	i-wavelength study of EHBL source	e 1ES 0229+200
We present a comprehensive ana	lysis of the broadband spectral e	energy distribution (SED) of the extreme high-
energy peaked BL Lac (EHBL) sou	ırce, 1ES 0229\$+\$200. Our study	vutilizes near-simultaneous data collected at
various epochs between Septemb	per 2017 and August 2021 (MJD:	58119\$-\$59365) from different instruments,
including {\em AstroSat}\$-\$UVIT, \$	SXT, LAXPC, {\em Swift}\$-\$UVOT,	, {\em Fermi}-LAT, and MAGIC. We investigate
the one-zone synchrotron and synchrotron self-Compton (SSC) model, employing diverse particle distributions such		
as the log parabola, broken power law, power law with a maximum electron energy \$\gamma\$, energy-dependent		
diffusion (EDD), and energy-dependent acceleration (EDA) models to fit the broadband SED of the source. Our		
findings indicate that both peaks in the SED are well described by the one-zone SSC model across all particle		
distribution models. We estimate the jet power for different particle distributions. The estimated jet power for broken		
power law particle distributions is found to be on the order of \$10^{47}\$ (\$10^{44}\$) erg s\$^{-1}\$ for a minimum		
electron energy \$\gamma_{min}\$ \$\sim\$10 (10\$^4\$). However, for intrinsically curved particle energy distributions		
(e.g., log parabola, EDD, and EDA models), the estimated jet power is $\sin 10^{+1}$. The SED fitting		
at five epochs enables us to explore the correlation between the derived spectral parameters of various particle		
distribution models. Notably, the observed correlations are inconsistent with the predictions in the power-law with		
a maximum \$\gamma\$ model, although the EDD and EDA models yield the correlations as expected. Moreover, the		
estimated physical parameter values are consistent with the model assumptions.		

ASI2025_479	Kinjal Roy	Poster	
High Ene	rgy Phenomena, Fundamental Phy	vsics and Astronomy	
Iron fluo	rescence line as a tracer of reproc	essing environment	
Iron fluorescence emission is ubi	quitous in HMXB systems. Iron f	luorescence emission is ubiquitous in HMXB	
systems. The iron fluorescence is p	roduced by reprocessed emission	from the binary environment populated by the	
dense clumpy wind of the compar	ion stars in the HMXB systems. A	large collecting area and excellent sensitivity	
near the iron fluorescence band n	nake XMM-Newton an ideal instr	ument for studying the phase variation of the	
reprocessing environment in these	e systems. We undertook a syste	ematic study of several bright HMXB pulsars	
observed with XMM-Newton. Amo	ng these sources, GX 301-2, Vela	X-1, Her X-1 and Cen X-3 were bright with long	
exposure and significant iron line ea	exposure and significant iron line equivalent width. I used these data sets to study the variations in iron emission with		
the spin phase of the NS at different orbital and super-orbital phases. The high collecting area and excellent spectral			
resolution of XMM-Newton not only	y allow us to distinguish the neutra	l and ionized iron emission lines but also allow	
us to perform a detailed study of the spin variation of these emission lines. Pulse-phase resolved analysis from all			
the sources shows significant variation of iron fluorescent emission with phase. We discuss the results from the			
observations. The pulsed nature of the fluorescence emission is not expected from a homogeneous and isotropic			
binary environment. In GX 301-2, c	lumpy winds can explain the obse	rved variation of iron fluorescence.	

ASI2025_252	Koushik Ballav Goswami	Poster	
High Ene	rgy Phenomena, Fundamental Phy	vsics and Astronomy	
Isotropic cold compact objects ir	n f(R,T) gravity admitting CFL equa	tion of state modified by a non-minimal QCD	
	correction factor		
This article presents a method to fi	nd exact solution of field equation	s in \$f(R,T)\$ theory of gravity for isotropic cold	
compact objects in hydrostatic equ	uilibrium. In this particular case, th	ne function \$f(R,T)\$ is assumed to be a simple	
linear combination of Ricci scalar	(\$R\$) and the trace of the energy-	momentum tensor (\$T\$). The interior of these	
compact objects is modeled using	compact objects is modeled using a colour-flavour locked (CFL) equation of state, which describes the behaviour of		
deconfined quarks. To simplify the	calculations, a specific form of t	he metric, proposed by Vaidya and Tikekar, is	
adopted. This metric describes a	adopted. This metric describes a 3-spheroidal geometry embedded in a flat four-dimensional space. The CFL		
equation of state is generalised by incorporating a QCD correction term (\$c_{cor}\$), which significantly influences			
the equation of state and the energy per baryon of quark matter. This modification allows the model to accommodate			
a wider range of compact objects, including EXO 1745-248, LMC X-4, PSR J0740+6620, and even the recently			
observed binary neutron star merger GW 230529\$_{-}\$181500. The calculated radii of these objects from the model			
are consistent with the observed values.			

ASI2025_235	KRIPA RAM SAHU	Poster	
High Ene	rgy Phenomena, Fundamental Phy	vsics and Astronomy	
Photometric a	and spectroscopic studies of Type	la supernova SN 2011ae.	
We present optical UBVRI photome	etric and medium resolution spectr	roscopic observations of the Type Ia supernova	
SN 2011ae during -6 to +119 days	relative to its B band maximum. S	N 2011ae reached its maximum brightness in	
the B band on JD 2455621.43 ± 0.	the B band on JD 2455621.43 ± 0.20, with an apparent magnitude of 13.46 ± 0.05 mag. This corresponds to peak		
absolute magnitude M(B) = -18.88	absolute magnitude M(B) = -18.88 \pm 0.22 mag. The post-peak decline is characterised by Δ m15(B) of 1.02 \pm 0.01		
mag. The peak quasi-bolometric luminosity for SN 2011ae is logL= 42.85 ± 0.02 erg/s. The mass of 56Ni synthesized			
in the explosion is estimated as 0.30 ± 0.05 solar mass. The spectrum obtained around maximum brightness shows			
absorption due to Si II, S II, Ca II, Fe II, and Fe III, consistent with the characteristics of type Ia SNe. The expansion			
velocity of the ejecta around the maximum, estimated using the Si II 6355 line, is found to be \sim 11000 km/s.			

ASI2025_459	Kunj Panchal	Poster	
High Ene	rgy Phenomena, Fundamental Phy	vsics and Astronomy	
Probing the impact of ast	trophysical parameters on the pro	perties of lensed gravitational waves	
Around 100 Gravitational Waves ha	ave been detected by current gene	ration GW detectors. With the next generation	
GW detectors, there are high chan	ces of detecting gravitationally le	nsed gravitational waves. Lensed gravitational	
waves, even if rare, provide a good	d opportunity to study cosmology	and astrophysics. In particular, the statistical	
properties of lensed GWs from corr	pact binary coalescences show a	characteristic distribution in their lensed image	
properties such as the time delays	properties such as the time delays and magnifications. These characteristic lensed image distributions can be used		
in myriad of ways such as probing Cosmology, gaining insights into astrophysics of merging progenitors or using the			
distributions as priors in techniques used to search and identify lensed GWs. In this work, we study the impact of			
variations in the cosmological para	variations in the cosmological parameters and astrophysical models on the characteristic statistical distribution of		
lensed images of GWs. In particular, we study the impact of using different Hubble constant , Binary Black Hole mass			
distribution, galaxy velocity dispersion function and galaxy mass profiles chosen from different studies in the			
literature. We find that the tested variations in parameters or models result in time delay distributions that are			
statistically similar for the LIGO and VIRGO detectors at current (O4) sensitivity.			

ASI2025_553	Manoneeta Chakraborty	Poster	
High Ene	rgy Phenomena, Fundamental Phy	vsics and Astronomy	
Spectro-temporal Investigation o	f Quasi-periodic Oscillations From	n Black Hole X-ray Binary 4U 1630-472 Using	
	NICER		
We present a comprehensive anal	ysis of the spectro-temporal char	acteristics of the X-ray variabilities from black	
hole X-ray binary 4U 1630–472 d	uring its three outbursts (2018, 2	2020, and 2021) as observed by NICER. We	
detected 27 Quasi-Periodic Oscilla	ations (QPOs), out of which 25 we	ere observed during the 2021 outburst. In this	
study, we specifically focus on the	relationship between spectral and	timing parameters and the frequency of type-	
C QPOs in the 2021 outburst of	C QPOs in the 2021 outburst of the black hole binary 4U 1630-472 during its rising phase. We found strong		
correlations between the photon index of the non-thermal emission and the QPO frequency. We also observed a			
critical frequency at \sim 2.31 Hz, above which the behavior of the Q-factor of the QPO changed significantly with the			
QPO frequency. We further identif	fied two events characterized by	a surge in the total flux, corresponding to the	
disappearance of type-C QPOs. Al	though the first event appeared lil	ke an X-ray flare, during the second event, the	
source reached a state with a total flux higher than 10^{-8} erg/cm2 /s and exhibited a different type of QPO with			
lowerfrequenciesandweakeramplitudes.WecompareourresultswiththepreviouslyreportedQPOcharacteristics			
for black hole outbursts and discu	ss the various models that could i	interpret the critical frequency and potentially	
explain the origin and evolution of t	hese type-C QPOs.		

ASI2025_12	Param Joshi	Poster	
High Ene	rgy Phenomena, Fundamental Phy	vsics and Astronomy	
High Frequency W	ideband Study of FRB20240114A	with the Allen Telescope Array	
FRB 20240114A, a bright repeating	fast radio burst, was initially report	ed by the CHIME/FRB collaboration on January	
26th 2024. High fluence emissions	(> 10 Jy-ms) from this source have	been reported by numerous radio telescopes.	
This FRB was detected at a DM of	527.7 pc cm^-3 and is localized	to a host galaxy at redshift Z = 0.42. Previous	
surveys indicate that the bursts ex	hibit highly band-limited or narrow	band emission characteristics, spanning less	
than ~100 MHz. In this presentation	n, I will report on our wideband stud	dy of FRB 20240114A using the upgraded Allen	
Telescope Array (ATA) of the SETI I	Telescope Array (ATA) of the SETI Institute, USA. Our observations cover two independent 672 MHz spectral bands,		
which were incrementally stepped to uniformly cover the 1 to 7.5 GHz range. We conducted approximately 1200			
hours of observations, representing one of the largest follow-up campaigns of repeating FRBs across the widest			
frequency ranges. Thus far, 42 bursts have been detected in the frequency range of 1 to 3 GHz. Notably, our findings			
reveal that, in contrast to previou	reveal that, in contrast to previous observations, FRB 20240114A exhibits wideband emission, with five bursts		
covering an unprecedented total bandwidth of approximately 800 MHz. I will also discuss various burst properties			
such as width, fluence, spectral occupancy, burst rate, etc. This presentation will also address the energy budget of			
these broadband bursts, which can help scrutinize various emission mechanism models given its distance and host $ \label{eq:constraint}$			
galaxy environment.			

ASI2025_688	Pinku Routaray	Poster	
High Ene	High Energy Phenomena, Fundamental Physics and Astronomy		
Impacts of Darl	k Matter on the properties of Static	and Rotating Neutron star	
This research explores the combined	ned effects of dark matter (DM)	and rotation on the structural and dynamical	
properties of neutron stars (NSs).	. Utilizing a self-interacting dark	matter model inspired by the neutron decay	
anomaly, the study integrates DM	within the relativistic mean-field (RMF) framework, modeling static and rotating	
NSs to observe the impact of varying	ng DM interaction strengths and ar	ngular velocities. The Hartle-Thorne formalism	
is employed to model rotating star	s, examining key properties, inclu	ding mass, radius, central energy density, and	
eccentricity, across a range of DN	M and rotation conditions. Result	ts reveal that DM significantly influences the	
neutron star's equation of state (E	OS), generally softening it and rec	lucing the star's mass and radius. In contrast,	
rotational effects increase mass	and radius due to centrifugal for	prces. Higher DM fractions reduce the NS's	
eccentricity, indicating less deform	ation from rotation compared to D	M-free stars. Additionally, variations in the DM	
interaction strength alter the star's	s mass-shedding limit, with low D	M fractions allowing higher rotational speeds	
before mass-shedding occurs, thu	is supporting larger mass and rad	lii under rotation. For fixed DM fractions, high	
angular velocities lead to positive	deviations in mass and radius fr	rom the baseline (DM-free) values, indicating	
enhanced deformation, while low	angular velocities result in reduce	ed mass and radius due to DM's influence. By	
comparing DM-admixed and DM-free models, the study also examines the relative deviations in maximum rotational			
mass and equatorial radius, showing that both DM and rotation substantially modify these properties. The findings			
underscore the interplay between DM content and rotation in defining NS characteristics, offering insights for			
interpreting observations of highly dense, rotating astrophysical objects. The results align well with current			
observational constraints, including NICER and XMM-Newton data, providing an avenue for future studies on DM's			
role in the behavior of ultra-dense matter within NSs.			

ASI2025_106	Praduman Pandey	Poster
High Ene	rgy Phenomena, Fundamental Phy	vsics and Astronomy
Detection of N	1arkarian 501 flare from MACE and	d multwavelength analysis
Markarian 501, a high frequency p	beaked blazar at a redshift of z =	0.0337, is well known for its frequent flaring
episodes across multiple wavelengths, from radio to very high energy (VHE) gamma-rays. MACE telescope detected		
a VHE gamma-ray emission with ~90% increase compared to the preflare state on 27 June 2022. Quasi-		
simultaneously, an X-rays flaring episode from Markarian 501 was detected by Swift-XRT in the same month with		
the peak X-ray flux increasing up to ~80% above its average preflare level. In this work, we present a comprehensive		
multiwavelength analysis of Marakarian 501 using the data from the MACE observations, high energy (HE) data from		
Fermi LAT and X-ray data from Swift XRT and UVOT. The X-ray variability and its correlation with the HE/VHE gamma-		
ray emission will be investigated.		

ASI2025_311	Prasanta Bera	Poster	
High Ene	rgy Phenomena, Fundamental Phy	vsics and Astronomy	
Rela	ativistic oblique shock reflection: r	numerical study	
Shock is very common in astrophys	ics, especially in high-energy emis	sion physics. Most studies in the literature deal	
with one-dimensional propagation	with one-dimensional propagation. Here, we numerically study the interaction of a relativistic fluid and the		
propagation of a relativistic shock in two dimensions. We consider the oblique incidence of a shock with an idealized			
reflecting wall. The perpendicular velocity component of the fluid adjacent to the wall vanishes, forming a			
discontinuity/shock with the incident flow. Depending on the properties of the incident flow, a uniform post-shock			
region develops, indicating a regular reflection. We find that the transition from regular reflection to irregular (Mach)			
reflection coincides with the sonic condition.			

ASI2025_495	Probit Kalita	Poster
High Ene	rgy Phenomena, Fundamental Phy	vsics and Astronomy
Exploring the impact of the S	\$\sigma\$-cut scheme on neutron s	tar oscillations and thermal relaxations
The σ -cut scheme was recently pr	oposed as a method of stiffening t	he neutron-star equation of state (EoS) at high
densities without altering its behave	ior around the nuclear saturation o	density. We use the σ -cut scheme to describe
the dense matter containing hyper	ons and kaons, enabling us to obt	ain high-mass neutron stars without having to
modify the relativistic mean field (RMF) model parameters. Using three different parametrizations of the RMF model,		
we investigate the effects of the σ -cut scheme on particle populations, tidal deformability, nonradial oscillations,		
and thermal evolution of neutron stars. Our investigations yielded promising results, supporting the use of the σ -cut		
scheme as a viable method for incorporating additional exotic degrees of freedom in neutron-star matter. This is		
particularly evident in the thermal evolution calculations, where it significantly enhances the alignment between the		
theoretical predictions and the observed temperatures of neutron stars.		

ASI2025_259	Raj Prince	Poster	
High Ene	High Energy Phenomena, Fundamental Physics and Astronomy		
Dissecting the broad-b	and emission from γ-ray blazar PK	S 0735+178 in search of neutrinos	
The origin of the diffuse flux of TeV	–PeV astrophysical neutrinos is st	till unknown. The γ -ray blazar PKS 0735+178,	
located outside the 90 percent loca	alization region at 2.2deg from the I	pest-fitting IC-211208A event, was found to be	
flaring across all wavebands. In ad	dition to leptonic synchrotron (SYI	N) and SYN self-Compton (SSC) emission, we	
invoke photohadronic (py) interac	tions inside the jet to model the s	pectral energy distribution (SED) and neutrino	
emission. We analyze the 100 d γ -	ray and X-ray data and 10 d around	the neutrino event are chosen to generate the	
broad-band SED. The temporal light curve indicates that the source was in a high state in optical, UV, γ -ray, and X-			
ray frequencies during the neutrino detection epoch. In the one-zone lepto-hadronic model, the SSC photons do not			
provide enough seed photons for py interactions to explain the neutrino event. However, including an external photon			
field yields a neutrino event rate of 0.12 in 100 d, for the IceCube detector, using physically motivated values of the			
magnetic field, an external photon field peaking at optical wavelength, and other jet parameters. The radiation from			
secondary electrons at X-ray energies severely constrains the neutrino flux to a lower value than found in previous			
studies. Moreover, the flux of high-energy γ -rays at GeV energies from the decay of neutral pions is sub-dominant at			
the high-energy peak of the SED, suggesting a higher correlation of neutrino flux with X-ray flux is plausible. I will also			
show the result of other possible blazar found in connection with IceCube neutrinos.			

ASI2025_227	Rohit Mandal	Poster
High Ene	rgy Phenomena, Fundamental Phy	vsics and Astronomy
Diffuse X-ray Emission Around	Ultraluminous X-ray Sources: A Sy	stematic Search Using Archival X-ray Data
Accreting black holes (BHs) and ne	eutron stars (NSs) in binary syster	ns are among the universe's most powerful X-
ray sources. Ultraluminous X-ray	sources (ULXs), the most extre	eme version of these systems, exhibit X-ray
luminosities 100–1,000 times brig	hter than standard X-ray binaries.	At such high accretion rates, theoretical and
numerical studies indicate powerfi	ul outflows, which have been dete	cted either as outflowing gas or as large (~100
parsec) cavities blown into the sur	rounding medium. Most studies of	these cavities have been conducted in optical
and radio bands. However, the recent detection of diffuse X-ray emission around a ULX (Belfiore et al. 2020)		
demonstrates the potential of X-ray observations to probe these structures. Despite this, no systematic search for		
such cavities in the X-ray band has been conducted. In this study, to identify potential cavities or diffuse structures		
we are conducting a systematic search for extended X-ray emission around ULXs by comparing observations with		
realistic point spread function PSF simulations. In cases of detection, we are modeling the wind energetics and		
accretion history from the spectral and spatial data to provide new insights into ULX feedback mechanisms. For		
sources where no extended emission is detected, we place upper limits on the luminosity of the diffuse X-ray		
component. We are undertaking a systematic study to look for extended emission, by comparing observations with		
realistic PSF simulations.		

ASI2025_555	Rupak Roy	Poster	
High Ene	rgy Phenomena, Fundamental Phy	vsics and Astronomy	
	Asymmetry in superluminous su	pernovae	
Supernovae (SNe) are catastrophic	c explosions through which massiv	ve stars die. Considering the progenitors' initial	
angular momentum and the geome	try of the early neutrino-burst, one	may expect these explosions to be asymmetric	
to some extent. Moreover, signatur	es of this asymmetry are expected	I to be imprinted in the geometry of the ejected	
material as well. Observational	ly this can be probed through	spectropolarimetry. The Hydrogen deficit	
superluminous supernovae (SLSN	-I), which are 10-100 times more	luminous than normal SNe, should be more	
asymmetric. Investigation of such s	systems through spectropolarimet	ry will help us to understand the asphericity in	
SLSNe, and how the nature of asy	mmetry varies in different types o	f stellar explosions from low-mass progenitor	
stars to high-mass progenitors. He	re I will present the results of spec	tropolarimetric observations of three SLSN-I -	
namely SNe 2018bsz, 2018ibb, 20	019szu. These events are unique	as it was proposed that they originated from	
different physical processes (SNe 2	different physical processes (SNe 2018bsz, 2019szu are from due to spin-down Magnetar / CSM interaction, while		
SN2018ibb is from the pair-instability process). On the basis of polarization data, I will discuss the possible physical			
processes that may have produced these SLSNe. Here I will also compare the polarization of these events with that			
of other SLSNe, hydrogen-deficit SNe, and Gamma-Ray Bursts (GRBs) to get a more generalized picture of			
asymmetry in stellar explosions.			

ASI2025_49	Samik Dutta	Poster
High Energy Phenomena, Fundamental Physics and Astronomy		
Multiple Emission Regio	ns in Jets of the Low-Luminosity A	ctive Galactic Nucleus in NGC 4278
The Large High Altitude Air Shower Ob	servatory (LHAASO) has detected ver	y-high-energy gamma rays from the low-ionization
nuclear emission-line region galaxy N	GC 4278, which has a low-luminosit	y active galactic nucleus (LLAGN) and symmetric,
mildly relativistic S-shaped twin jets o	letected by radio observations. Few L	LAGNs have been detected in gamma rays due to
their faintness. Earlier, several radio-emitting components were detected in the jets of NGC 4278. We model their radio		
emission with synchrotron emission of ultra-relativistic electrons to estimate the strength of the magnetic field inside these		
components within a time-dependent framework after including the ages of the different components. We show that the		
synchrotron and synchrotron self-Compton emission by these components cannot explain the Swift X-ray data and the LHAASO		
gamma-ray data from NGC 4278. We suggest that a separate component in one of the jets is responsible for the high-energy		
emission, whose age, size, magnetic field, and the spectrum of the ultra-relativistic electrons inside it have been estimated after		
fitting the multiwavelength data of NGC 4278 with the sum of the spectral energy distributions from the radio components and		
the high-energy component. We note that the radio components of NGC 4278 are larger than the high-energy component, which		

the high-energy component. We note that the radio components of NGC 4278 are larger than the high-energy component, which has also been observed in several high-luminosity active galactic nuclei.

ASI2025_128	Sanjeeva Rao Prattipati	Poster	
High Ene	rgy Phenomena, Fundamental Phy	sics and Astronomy	
sGR	Bs similar to GW/sGRB170817A i	n γ-ray emission	
The rate of gravitational waves from ne	utron star-neutron star mergers detec	ted by the Laser Interferometer Gravitational-Wave	
Observatory (LIGO; B. P. Abbott et al.	2017) indicates the existence of eve	n more short gamma-ray bursts (sGRBs) similar to	
GW/sGRB 170817A among the total g	GW/sGRB 170817A among the total gamma-ray bursts (GRBs) recorded by satellite detectors such as BATSE, Fermi-gamma-		
ray burst monitor(Fermi-GBM), and S	ray burst monitor(Fermi-GBM), and Swift. We investigated sGRBs in the Fermi-GBM database based on the \$\gamma\$-ray		
emission characteristics of sGRB170817A, the first GRB with an electromagnetic counterpart detected by LIGO. We adopted a			
multifaceted approach to identify analogous sGRBs, which involved computing the Hardness Ratios HR1 and HR2, followed by			
clustering via the K-means algorithm. This process resulted in identifying over 40 sGRBs like (A. von Kienlin et al. 2019), including			
the reference sGRB170817A, after which we analyzed the spectrum features using GBM techniques. Our study shows the			
presence of few such events in Fermi-GBM data.			

ASI2025_280	Saptarshi Sarkar	Poster
High Energy Phenomena, Fundamental Physics and Astronomy		
Giant pulse detection from a transitional millisecond pulsar		
Ciant nulses (CDs) are intense, energia hursts emitted by a subset of radia nulsers, offering low insidets into high energy		

Giant pulses (GPs) are intense, sporadic bursts emitted by a subset of radio pulsars, offering key insights into high-energy processes in pulsar magnetospheres. We will present the first detection of GPs from PSR J1227-4853, a rare transitional millisecond pulsar (tMSP) and one of only three known tMSPs, discovered with the Giant Metrewave Radio Telescope (GMRT). Over 162 hours of observation, we detected 204 GPs from PSR J1227-4853, establishing it as a new GP source. Our results reveal a correlation between GP emissions and the pulsar's image flux density, as well as both its orbital and pulse phases, with most GPs occurring near eclipse boundaries—suggesting potential plasma lensing effects. We observed significant flux density variations across different pulse phase components, with one component displaying a power-law fluence distribution, a characteristic shared with other GP-emitting pulsars. Uniquely, no GPs were detected in the interpulse region, distinguishing this source from other pulsars where GPs are emitted at both main and interpulse phases. The waiting time distribution during an exceptionally active epoch showed clustered emissions with a Weibull index and power-law fluence distribution similar to those observed in fast radio bursts (FRBs), such as FRB 20200120E located within a Globular Cluster. This similarity in both Weibull and power-law indices supports the hypothesis that GP-emitting tMSPs may serve as progenitors for certain FRBs. Our findings provide new insights into the mechanisms of GP emission and their potential links to FRBs, advancing our understanding of extreme astrophysical phenomena within pulsar magnetospheres.

ASI2025_249	Sayantan Ghosh	Poster	
High E	nergy Phenomena, Fundamental Phys	sics and Astronomy	
Effects	of Energy-Momentum Squared Gravi	ty on Neutron Stars	
We study the effects of energy-moment	ntum squared gravity (EMSG) on the p	roperties and behaviour of neutron stars (NSs) with	
the variation of the free parameter,	\$\alpha\$. We derive the hydrostatic	equilibrium equations in EMSG and solve them	
numerically to obtain the neutron star	numerically to obtain the neutron star mass-radius relations for soft, stiff, and intermediate equations of state (EOS). We use		
the existing observational measurements of the masses and radii of NSs to constrain the tidal deformability, compactness, and			
\$f\$-mode frequency of the NS model. We find that the Stiff EOS undergoes the phase transition at the highest energy densities			
and pressures, followed by the Intermediate and Soft EOSs, demonstrating the differing characteristics of these models. This			
behaviour allows us to compare the effect of the chosen EOS on the star's sound speed profile, reaffirming the physical validity			
of the models across different parameter values.			

ASI2025_370	Sayantan Bhattacharya	Poster	
High Energy Phenomena, Fundamental Physics and Astronomy			
High-Resolution XMM-Newto	n Spectroscopy of EXO 0748-676's La	atest Outburst after Prolonged Quiescence	
EXO 0748–676, a well-studied neutror	n star low-mass X-ray binary, has re-en	tered its outburst following 16 years of quiescence.	
We present the findings from 55.5 ks	of XMM-Newton observations, using	g high-resolution spectroscopy with the Reflection	
Grating Spectrometer (RGS), which al	so provided impactful results about t	he source during the previous outburst. The XMM-	
Newton European Photon Imaging Ca	mera (EPIC) light curve captures a ty	be I X-ray burst, which leads to an optical burst by	
three seconds. To investigate the burs	three seconds. To investigate the burst's impact on ionization structure, we categorize spectra into burstless, pre-, and post-		
burst phases, with additional analysis of	of dip and non-dip intervals. Across all	phases, a broad O VII recombination line dominates	
the spectrum, accompanied by velocit	ty-broadened O VIII, N VII, and Ne IX f	eatures. Particularly, the Ne IX line shows variation	
in ionization states between pre-burst	in ionization states between pre-burst (11.65 A) and post-burst (13.56 A) spectra, while dips also significantly influence the line		
profiles. Similarities with the previous outburst are observed, including a similar spectral state, ionization structure, and same			
elemental lines, indicating stable, long-term accretion characteristics across these two outbursts. This work highlights the			
consistency in EXO 0748-676's spectral properties, providing insights into its accretion and ionization properties even after			
prolonged quiescent periods.(https://arxiv.org/abs/2408.02715)			

ASI2025_602	SHREE SUMAN	Poster
High Energy Phenomena, Fundamental Physics and Astronomy		
On the physical origin of X-ray variabi	lity in Seyfert galaxies using Fourier -fr	equency dependent covariance spectral modeling
In low-mass, bright, accreting AGN, X	-ray reverberation has been proven to	be a crucial technique for understanding the inner
accretion geometry around black hole	s but what drives the soft and hard X	-ray flux variations across a range of luminosites is
still elusive.In this work, we have ta	ken an unconventional approach to	modeling the Fourier frequency-dependent X-ray
covariance spectra to answer this que	estion.We have extracted X-ray cova	riance and rms spectra of two highly variable low-
mass Seyfert galaxies, MCG 6-30-15 a	and NGC 4593, using long-look XMM-I	Newton EPIC-pn observation and they are modeled
as a function of photon energy for diffe	rent Fourier frequencies. Motivated by	the fact that the X-ray flux variation is either caused
by the variation in absorption, direct r	non-thermal emission or reprocessed	I emission-like reflection, we have used a physical
model to fit covariance spectra in diffe	erent frequency regimes. We found th	nat complex absorption, relativistic reflections, and
variable power-law are essential to fit	the 0.3-9 keV covariance spectra of N	MCG-6-30-15: at higher frequency (25-40 × 10 ^–6
Hz), spectra are dominated by the varia	ability of reflection component with inn	ner accretion disk radius between 1-5 R_ISCO while
at lower frequency (7.75-11 × 10^ −6 I	Hz), the variability is dominated by the	direct non-thermal component while the inner disk
radius receded to a distance of 5.7-25.8 R_ISCO , where R _ISCO is the radius of the innermost stable circular orbit. While		
transiting from a lower to a higher frequency regime, normalization of the variability caused by reflection increases by \sim 2.75		
times. However, no change in the complex absorption is observed. Similar results are obtained for NGC 4593. Our analysis		
suggests that low frequency, low flux variability is dominated by the power-law component while high frequency, high flux		
variability is dominated by the relativis	tic reflection component.	

ASI2025_344	Siddhant Manna	Poster	
High E	nergy Phenomena, Fundamental Phys	sics and Astronomy	
Search for Dark Mat	ter Annihilation to gamma-rays from S	SPT-SZ selected Galaxy Clusters	
We search for dark matter annihilation	from galaxy clusters in the energy rar	nge from 1-300 GeV using nearly 16 years of Fermi-	
LAT data. For this purpose, we use 350	D galaxy clusters selected from the 25	00 deg2 SPT-SZ survey. We model the dark matter	
distribution using the NFW profile for t	distribution using the NFW profile for the main halo along with the Einasto profile for the substructure. The largest signal is seen		
for the cluster SPT-CL J2021-5257 with a significance of around 3σ . The best-fit dark matter mass and annihilation cross-section			
for this cluster are equal to (60.0±11.8) GeV and $\langle \sigma v \rangle$ =(6.0±0.6)×10^-25 cm^3 s^-1 for the b ⁻ b annihilation channel. However,			
this central estimate is in conflict with the limits on annihilation cross-section from dwarf spheroidal galaxies, and hence cannot			
be attributed to dark matter annihilation. Three other clusters show significance between 2–2.5σ, whereas all the remaining			
clusters show null results. The most stringent 95\% c.l. upper limit for the WIMP annihilation cross-section among all the			
clusters is from SPT-CL J0455-4159, viz. $\langle \sigma v \rangle$ =6.44×10^–26 cm^3 s^–1 for m_ χ =10 GeV and bb [–] annihilation channel.			

ASI2025_179	Siddharth Kumar Sahoo	Poster	
High E	High Energy Phenomena, Fundamental Physics and Astronomy		
Imprints of Einstein-M	axwell-dilaton-axion gravity in the obs	served shadows of Sgr A* and M87*	
The Kerr-Sen metric represents the ex	act, stationary, and axisymmetric bla	ck hole solution of Einstein-Maxwell-dilaton-axion	
gravity. Such a black hole is characteri	ized by the angular momentum a acqu	uired from the axionic field and the dilatonic charge	
r2 arising from string compactification	s. We study the role of spin and the di	ilaton parameter in modifying the shape and size of	
the black hole critical curve, which is a	ssociated with the projection of the sp	pherical null geodesics on the sky. We compare the	
theoretically derived critical curve with	n the Event Horizion Telescope results	s related to the images of M87* and Sgr A* to obtain	
constraints on the dilaton parameter r2	constraints on the dilaton parameter r2. We take into account the errors in mass and distance of M87* and Sgr A* while deriving		
their theoretical critical curve. Our ana	lysis reveals that the image of M87* e	xhibits a preference toward the Kerr scenario when	
the critical curve angular diameter is ca	alculated with the central value of ma	ss and distance. When errors in mass and distance	
are taken into account the allowed range of r2 turns out to be 0 \lesssim r2 \lesssim 1. For Sgr A*, the preferred range of r2 is 0.1 \lesssim r2 \lesssim 0.4			
when central values of mass and distance are used to calculate the theoretical critical curve. When error bars in mass and			
distance are used to calculate the theoretical critical curve of Sgr A*, the preferred range of r2 turns out to be 0 \leq r2 \leq 0.5. Thus			
the image of M87* favors the Kerr scenario and allows the Kerr-Sen scenario only when errors in the mass and distance are			
taken into consideration while the image of Sgr A* favors the Kerr-Sen scenario and allows general relativity when errors in the			
mass and distance are taken into account.			

ASI2025_70	Soma Mandal	Poster
High E	nergy Phenomena, Fundamental Phys	sics and Astronomy
Broadband spectral and	temporal properties of the atoll sourc	e 4U 1702-429 using AstroSat-NICER
We present the broadband spectro-t	emporal analysis of the atoll source	4U 1702-429 using an AstroSat observation and
another simultaneous observation by	AstroSat and NICER at two different e	epochs separated by a year. The photon spectra of
both observations can be described b	by a thermal Comptonization compor	nent whose seed photons arise from a black body
spectrum, a disk emission and a non-relativistic reflection component. For the first observation, the coronal temperature ~7 keV		
is smaller than the second ~13 keV, and the disk is truncated at a larger radius, ~150 km, compared to the second, ~25 km, for		
an assumed distance of 7 kpc. A kHz QPO at ~800 Hz is detected in the first and is absent in the second observation. Modeling		
the energy-dependent r.m.s and time lag of the kHz QPO reveals a corona size of \leq 30 km. A similar model can explain the energy		
dependence of the broadband noise at ~10 Hz for the second observation. The results suggest that kHz QPOs are associated		
with a compact corona surrounding the neutron star and may occur when the disk is truncated at large distances.		

ASI2025_261	Sonali Sahoo	Poster	
High Ene	High Energy Phenomena, Fundamental Physics and Astronomy		
Obse	ervability of SSA emissions from GI	RBs with Daksha	
The combined analysis of GRB140	The combined analysis of GRB140512A (Oganesyan et al. 2017) with data from the\textit{ Swift}-XRT energy range		
of 0.5-10 keV, the \textit{Swift}-BAT energy range of 15-150 keV, and Fermi-GBM 8 keV-1 MeV, suggests a change			
in the spectral slope at a few keV (nearly at 8 keV), indicating a spectral break. The study also claims the spectrum			
change could have resulted from synchrotron self-absorption (SSA). We analyzed the synchrotron and SSA emission			
modeling for GRB 140512A. Our preliminary modeling indicates that the SSA emission occurred during the			
\textit{Swift}-XRT observations. The upcoming observations with Daksha- a proposed space mission to detect high-			
energy counterparts of gravitational wave sources at 1 keV to 1MeV(Bhalerao et al. 2024) would be a suitable			
candidate for constraining the SSA modeling of GRBs.			

ASI2025_38	Soumya Gupta	Poster	
High Ene	rgy Phenomena, Fundamental Phy	vsics and Astronomy	
Investig	ating Spectral Width Evolution in C	Gamma-Ray Bursts	
Even with tens of thousands of G	amma-Ray Burst (GRB) detected	on an average of one per day, the emission	
process of these highly-energetic	phenomenon is unclear. Addition	ally, the GRB prompt-phase spectrum can be	
reproduced by multiple empirical f	reproduced by multiple empirical functions within the statistical significance adding further dubiety. The scepticism		
can be resolved, at least partially, by studying the spectral width W of the prompt spectra while comparing with the			
physically motivated emission models like thermal/synchrotron/inverse Compton. This can be further scrutinized by			
studying the evolution of the spectral width in the light of these emission models. We select an ensemble of bright			
GRB prompt spectra and study their spectral width evolution under a modified thermal emission scenario arising			
from the rapid cooling of a thermal fireball. The statistical treatment of this study is made viable by constructing a			
mathematical model of the physical scenario and coupling it with the 3ML statistical fitting package.			

ASI2025_166	Suman Bala	Poster	
High Ene	rgy Phenomena, Fundamental Phy	vsics and Astronomy	
The Gamma-ray Targeted Search (GTS); A generalized method to find	d sub-threshold Gamma-ray bursts combining	
	different instruments		
The Fermi Gamma-ray Burst Monit	or (GBM) Targeted Search has den	nonstrated remarkable efficiency in recovering	
weak signals from untriggered Co	ntinuous Time Tagged Event (CTT	E) data. We estimate that this method could	
significantly increase the volume	significantly increase the volume of the universe in which gravitational wave (GW) counterparts—like GRB		
170817A—can be detected, potentially expanding it by nearly an order of magnitude. To further this progress, we are			
excited to introduce a versatile, open-source tool: the Gamma-ray Targeted Search (GTS). Leveraging the newly			
developed Gamma-ray Data Tools (GDT), the GTS enables users to conduct custom searches for sub-threshold			
signals within GBM CTTE data at specified times (GW event times). Importantly, because the GTS is built on the GDT			
framework, it can also analyze GBM-like data from other missions, including BurstCube, Glowbug and the upcoming			
StarBurst mission. In this discussion, we will highlight the GTS's capabilities, recent significant results, and outline			
future enhancements aimed at creating a multi-mission targeted search. This expanded functionality would integrate			
the strengths of various gamma-ray instruments, facilitating deeper and more comprehensive explorations of the			
gamma-ray sky.			

ASI2025_24	Yogeesh N	Poster	
High Ene	rgy Phenomena, Fundamental Phy	vsics and Astronomy	
Modelling la	arge glitches with core superfluidit	y in mixed phase region	
Many pulsar exhibit a peculiar beha	aviour in their pulse profile of sudc	len increase in their rotational period, which is	
popularly known as pulsar g	litch. Some of them shows	giant glitches with relative amplitude	
\$\Delta\Omega/\Omega \sim 10^{	{-6}-10^{-5}\$. With the model of p	pinned neutron vortices inside the the neutron	
star (NS) crust, this large glitch ca	n not be explained so far. Howeve	er, the increasing evidence of massive pulsars	
indicates the appearance of exotic	degrees of freedon in the inner cor	e of the pulsars. In view of this we consider the	
pulsar as a hybrid star (HS) with qu	ark core surrounded by nucleonic	matter with a mixed phase region. This model	
opens up the possibility of votex-pi	nning inside the core too in the mix	ed phase region of quark and nucleonic phase.	
It is believed that at densities \$>2	who_0\$ first order phase transition	n of hadron to quark matter occurs. Under the	
Gibbs equilibrium conditions it is possible for hadrons and quark phase to coexist.Owing to global charge neutrality			
condition, quarks pasta structures	condition, quarks pasta structures are formed in the background of hadronic matter. We consider these pasta		
structures as pinning sites of superfluid vortices which store enough angular momentum to account for larger			
glitches. Consideration of unpinning of the vortices from this region in addition to the contribution form the crust may			
lead to large glitches of the pulsars. We show that considering the core contribution the amplitude of glitch is coming			
to be of the order of \$\Delta\Omega/\Omega \sim 10^{-6}\$ which is close to the observations showed by Vela pulsar			
(PSR B0833-45).			

Posters in Galaxies and Cosmology

ASI2025_64	Abhinna Sundar Samantaray	Poster	
	Galaxies and Cosmology		
	Be Stars in the Small Magellanic Cloud (SMC	;)	
Star clusters, once thought to be	simple, coeval systems, often harbor multip	ole stellar populations with distinct	
chemical compositions and ages.	In this talk, I will discuss the role of stellar r	otation in driving this phenomenon,	
with a focus on how rotational mixi	ng and mass loss can create chemical and e	volutionary diversity within clusters.	
I will discuss how rapidly rotating E	Be stars - characterized by their hydrogen en	nission lines (Ha and H β), decretion	
gas disks, and high rotational veloci	gas disks, and high rotational velocities can contribute to the formation of multiple populations through mechanisms		
such as chemical enrichment, rotationally-induced evolutionary differences, and material ejection. We conducted a			
search for Be star candidates in the star clusters (SCs) (and in the field) in the Small Magellanic Cloud (SMC) and the			
Bridge using the STEP survey, carried out with the VLT Survey Telescope (VST). With the help of STEP deep Ha α			
photometry, we retrieved numerous new Be star candidates in the 64 Young SCs and their field, compared to the			
literature-based observations. Serendipitously, during our Be star hunt, we confirmed some known Planetary			
Nebulae (PNe) (and some other emission stars like Herbig Ae/Be stars, C stars, Mira variables, etc.), and found some			
new PNe candidates with extremel	y high Hα emission using STEP photometry.		

ASI2025_584	Abhisek Swain	Poster	
	Galaxies and Cosmology		
The end of the End	of Greatness: Exploring the scale o	of homogeneity of our Universe	
The Cosmological Principle serves	as a foundational concept in mod	dern cosmology, shaping our understanding of	
the universe's structure and evolu	ition. This principle asserts that, o	on large scales, the universe is isotropic and	
homogeneous. Homogeneity entail	ls that the universe appears unifor	m when observed on sufficiently large scales,	
whereas isotropy implies that it loc	oks the same in all directions from	any given point. We placed constraints on the	
size of the largest possible scale of	homogeneity in our universe. Spec	rifically, we found a lower bound for the largest	
homogeneous patch in which our ol	bservable universe resides. A large	-amplitude inhomogeneity on that scale would	
manifest itself as temperature flu	uctuations on the CMB sky map	and would thus have a contribution in the	
temperature anisotropy power spe	ctrum via the Grishchuk-Zel'dovic	h effect. The GZ effect is the contribution of an	
extremely large scale adiabatic de	nsity disturbance to the anisotrop	by of the microwave background. By setting a	
condition that the contribution to th	e quadrupole from the GZ effect ca	annot be greater than the WMAP upper limit on	
the quadrupole value, we can place constraints on the size of this inhomogeneity. We employed two models to			
describe large amplitude peaks in the primordial power spectrum, yielding two distinct lower bounds. For a delta			
peak function, we obtained L_(GZ)>2727L_0, where L_(GZ) and L_0 represent the size of the homogeneous patch			
and the current particle horizon, respectively, considering the Integrated Sachs-Wolfe effect. For the second model,			
which physically translates to a universe that is inhomogeneous and anisotropic when observed within a spherical			
shell of scale length between L_2 and L_1, we found L_2=L_(GZ), extending to 2196 times the observable universe,			
assuming L_1 approaches infinity.	assuming L_1 approaches infinity.		

ASI2025_583	Amrutha S	Poster
	Galaxies and Cosmolog	У
Understanding Stellar Initial Mass	Function in the different regions of	NGC 628 using MUSE and UVIT observations
We present a pilot study on the high	gh-mass end of the stellar initial n	nass function (IMF) in NGC 628. We focus on
variations across the arm, interar	m, and spur regions. Our researd	ch emphasizes H\$\alpha\$ emission primarily
detected from O stars, using VLA/M	IUSE, as well as UV emissions fron	n both O and B stars obtained with UVIT in star-
forming clumps (SFCs). We estimated the populations of O stars and massive B stars (mass above 10 solar mass).		
Subsequently, we found the median stellar IMF index for each region. Our findings indicate that the IMF index		
steepens when SFCs are populated with O stars of mass up to 100 solar mass. Notably, the interarm region exhibits		
a steeper, bottom-heavy IMF than the arms and spurs across all cases. Furthermore, the ratio of massive to less		
massive B stars (with masses ranging from 3 to 10 solar mass) yields a consistent IMF value, even when O stars are		
populated differently, making B star mass ratios a more reliable indicator of the IMF. We also present variations of		
the IMF with different properties of	the SFCs, which gives crucial resu	Its in understanding the IMF.

ASI2025_285	Ansha Ans	Poster	
	Galaxies and Cosmolog	ŷ	
Spectropol	larimetric study of superluminous	supernova SN2018bsz	
Supernovae and Superluminous su	pernovae are expected to be asyn	nmetric in nature to some extent. In this study,	
we analyzed the spectropolarimet	we analyzed the spectropolarimetric data of the nearest superluminous supernova SN2018bsz to investigate the		
geometry of the ejected material a	geometry of the ejected material and probed the asymmetric nature of this explosion. 2D spectral data have been		
reduced and analyzed using tools like IRAF to extract the 1D spectra. Further analysis has been done using Python-			
based routines. We delve into 2D spectral data to understand elemental composition, interactions with the			
circumstellar medium (CSM), and asymmetry in this SLSN explosion. By analyzing the spectropolarimetric			
observations, we have detected distinct polarisation patterns that shed light on the asymmetry and structural			
properties of this SLSN ejecta. Our analysis contributes to a broader understanding of SLSN evolution.			

ASI2025_108	Arav Bhaskaran Jayaprasad	Poster	
Galaxies and Cosmology			
A model of constrain	ned violent relaxation to quasi-stationa	ary states of spherical halos	
Collisionless self-gravitating systems,	such as galaxies and dark matter halos, un	dergo violent relaxation during their formation.	
The potential oscillations that drive thi	s relaxation damp after a few dynamical tir	mes, leading to an incompletely relaxed quasi-	
stationary state (QSS) that slowly evo	lves on relaxation time scales. Simulatior	ns of dissipationless collapse from cold initial	
conditions have shown that violently re	elaxed QSSs have several quasi-universal	properties, which might explain the ubiquitous	
properties of elliptical galaxies. Follo	wing a picture of short-lived large ampl	itude oscillations that lead to a dynamically	
constrained phase space density, we	introduce a class of anisotropic spherica	al distribution functions (DFs) that depend on	
energy \$E\$, pericenter \$r_p\$, and a f	ree parameter \$\xi_s\$ which modulates t	the region of violent relaxation. A DF of these	
quantities, with a cutoff in pericente	r \$\phi(r_p, \xi_s)\$, chosen to be of the	Fermi-Dirac form, generalizes the model of	
Mangalam et al. (1999) and leads to	QSS configurations. Based on the dynam	nical constraints of incomplete and confined	
relaxation (Tremaine 1987), we discus	relaxation (Tremaine 1987), we discuss two variants of DFs of this type that suppress orbits with high radial periods with a factor		
proportional to the radial frequency. T	proportional to the radial frequency. These models possess several desirable properties that match well with dissipationless		
$cold\ collapse\ simulations,\ including\ a\ density\ that\ falls\ off\ as\ r^{-4}\ velocity\ dispersions\ that\ fall\ off\ as\ sigma^2\ propto\ r^{-2}\ pr$			
1}\$, an isotropic core with a radially anisotropic halo, pseudo phase space density \$\rho/\sigma^3\propto r^{-5/2}\$, and an			
increasing energy distribution with a finite value at $E=0$. In addition, the surface brightness law follows the $R^{1/4}$ law that			
agrees with observed profiles of elliptical galaxies. We also discuss testing the stability of these models and their extension to			
axisymmetric systems.			

ASI2025_612	Archis Mukhopadhyay	Poster	
	Galaxies and Cosmology		
The 21-cm signal from the Cosmi	c Dawn: Comparing the statistical	properties from the 21cmFAST and GRIZZLY	
	simulations		
The 21cm signal of neutral Hydroge	en is set to revolutionize our unders	standing of the astrophysics of the high redshift	
Universe. Several attempts have b	een made to model this signal us	ing numerical, semi-numerical, and analytical	
approaches. In this work, we com	pare the outcomes of two simulat	ions, GRIZZLY and 21cmFAST, in the Cosmic	
Dawn. 21cmFAST is a semi-num	erical code that generates the d	ensity, ionization, peculiar velocity, and spin	
temperature fields to produce the	temperature fields to produce the differential 21-cm brightness temperature. On the other hand, GRIZZLY is a 1-D		
radiative transfer code, assuming every galaxy to be a spherically symmetric source of photons. We use the same			
density fields and source properties for both algorithms to ensure a consistent comparison. We explore the variation			
in the specific X-ray luminosity per unit star formation (L_X / SFR) and the turnover halo mass for efficient star			
formation and compare the statistical properties of the signal, such as the power spectrum, bispectrum, and HII			
bubble morphology descriptors.			

ASI2025_189	Arihant Tiwari	Poster	
	Galaxies and Cosmology		
Spectroscopic Quasar Ar	nomaly Detection (SQuAD) I: Rest-	Frame UV Spectra from SDSS DR16	
We present the results of applying	anomaly detection algorithms to	a quasar spectroscopic sub-sample from the	
SDSS DR16 Quasar Catalog, cover	ring the redshift range $1.88 < z < 2$.47. Principal Component Analysis (PCA) was	
employed for dimensionality reduc	tion of the quasar spectra, followe	ed by hierarchical K-Means clustering in a 20-	
dimensional PCA eigenvector hype	erspace. To prevent broad absorpt	ion line (BAL) quasars from being identified as	
the primary anomaly group, we con	ducted the analysis with and witho	ut them, comparing both datasets for a clearer	
identification of other anomalous q	juasar types. We identified 1,888 a	anomalous quasars, categorized into 10 broad	
groups. The anomalous groups inclu	ude C IV Peakers—quasars with ex	tremely strong and narrow C IV emission lines;	
Excess Si IV emitters—quasars wh	Excess Si IV emitters—quasars where the Si IV line is as strong as the C IV line; and Si IV Deficient anomalies, which		
exhibit significantly weaker Si IV emission compared to typical quasars. The anomalous nature of these quasars is			
attributed to lower Eddington ratios for CIV Peakers, super-solar metallicity for Excess Si IV emitters, and sub-solar			
metallicity for Si IV Deficient anom	metallicity for Si IV Deficient anomalies. Additionally, we identified four groups of BAL anomalies: Blue BALs, Flat		
BALs, Reddened BALs, and FeLoBALs, distinguished primarily by the strength of reddening in these sources. Further,			
among the non-BAL quasars, we identified three types of reddened anomaly groups classified as heavily reddened,			
moderately reddened, and plateau-shaped spectrum quasars, each exhibiting varying degrees of reddening. The			
detected anomalies are presented as a value-added catalog.			

ASI2025_746	Arpan Krishna Mitra	Poster	
	Galaxies and Cosmology		
Barrow	Barrow Holographic Dark Energy in Brane World Cosmology		
Cosmological features of Barrow H	Holographic Dark Energy (BHDE),	a recent generalization of original Holographic	
dark energy with a richer structur	e, are studied in the context of [DGP brane, RS II brane-world, and the cyclic	
universe. It is found that a flat FRW scenario with pressure less dust and a dark energy component described as			
BHDE can accommodate late time acceleration with Hubble horizon considered as infrared cut off even in the			
absence of interaction between the dark sectors. Statefinder diagnostic reveals that these model resemble ACDM			
cosmology in future. It is found that BHDE parameter Δ , despite its theoretically constrained range of values, is			
significant in describing the evolution of the universe, however, a classically stable cosmological model cannot be			
obtained in the RS-II and DGP brane. Viability of the models is also probed with observed Hubble data.			

ASI2025_408	Arpit Kottur	Poster	
Galaxies and Cosmology			
A Streamlined Model for	or Simulating Galactic Rotation Cu	rves with Observational Validation	
In this work we present a stream	lined yet robust simulation frame	ework for generating galactic rotation curves,	
optimized for computational efficient	ency while retaining fidelity to obse	erved data. The model integrates contributions	
from a galaxy's bulge, disk, and	from a galaxy's bulge, disk, and dark matter halo, represented by Hernquist, exponential, and NFW profiles,		
respectively, to replicate realistic	respectively, to replicate realistic galactic rotation dynamics. Validated against observed rotation curves from		
galaxies such as the Milky Way and Andromeda, the simulation captures primary rotation curve characteristics and			
provides a close approximation of mass distribution within these galaxies. While minor discrepancies are present,			
primarily due to simplified profile assumptions, the model effectively balances accuracy with simplicity, offering a			
practical tool for galactic dynamics research. This accessible framework serves as a foundation for further studies			
in galaxy structure and evolution and is adaptable for educational applications.			

ASI2025_628	Barenya Dev	Poster
	Galaxies and Cosmolog	(y

A Multi-Frequency Investigation of the S-shaped Radio Galxy IC2402: A Restarted or Precessing Jet?

Double-double radio galaxies (DDRGs) represent a unique subclass of restarted radio galaxies, with two distinct episodes of active galactic nucleus (AGN) activity, manifested as two pairs of radio lobes which are usually co-linear. However, disentangling this restarting jet activity from the complex structures formed due to jet/counter-jet precession (twisted or knotted jets) is challenging as it needs sensitive and high-resolution multi-frequency data. The previous studies of the radio source J0847+3147, hosted by the brightest cluster galaxy IC 2402 in the relaxed cluster WHL J084759.0+314708 at a redshift of \$z = 0.067\$, have classified it as a DDRG based on a low-sensitive VLA FIRST image. However, archival Giant meterwave Radio Telescope (GMRT) data (325 MHz) and Very Large Array Sky Survey (VLASS) data (3 GHz) rather indicates a twisted/bent jet type of morphology for this source. In this study, we present upgraded GMRT (uGMRT) observations of the S-shaped radio galaxy IC 2402 at 650 MHz and 1.4 GHz. A detailed morphological analysis reveals inner jets resembling a Fanaroff-Riley type II (FRII) structure, multiple jet knots, and diffuse outer lobes. We conduct a multi-frequency spectral aging analysis and incorporate a kinematic jet precession modeling to investigate the source's activity history, and S-shaped morphology.

ASI2025_115	BIBHUPRASAD MISHRA	Poster	
	Galaxies and Cosmolog	ίγ	
Detection ar	nd properties of Lyman Break Gala	xies at redshift $2 < z < 3$.	
We present results of a search for	bright Lyman break galaxies (LBGs	s) at 2 \leqslant z \leqslant 3 in the GOODS-North field using	
dropout technique in combination	with color selection using CANDE	LS observation. We apply two set of selection	
criteria to identify F275W and F336	criteria to identify F275W and F336W-dropout to get a sample of 114 and 194 LBG candidates at z \sim 2.1 and z \sim 2.7		
respectively. We use multi-wavelength imaging combined with available spectroscopic and photometric redshifts			
to carefully access the validity of our UV-dropout candidates. We divide the samples of bin size z = 0.1, and estimate			
LBG candidate ages, masses, and star formation rates from fitting CIGALE synthesis evolution models. We track the			
growth of mass and size of galaxies from z~3 to z~2. Overall, we can show that LBGs are low massed compact			
structures with half-light radii of only a few kpc. A true Lyman break criterion at $z \sim 2$ is therefore, more directly			
comparable to the populations found at z \sim 3, which contains a red fraction.			

ASI2025_76	Chandra Shekhar Murmu	Poster
Galaxies and Cosmology		

Forecasting the CO-21cm cross-correlation signal from the EoR using line-intensity mapping surveys Line-intensity mapping (LIM) is expected to be a promising tool for probing the Epoch of Reionization (EoR) via accumulating cumulative flux of line emissions from galaxies. However, the instrumental noise of the LIM surveys will contaminate the LIM signal and, therefore, the observable summary statistics and degrade the detectability of the LIM signal. One possible method to tackle this is to cross-correlate with a different tracer of the high redshift universe, such as the HI 21cm signal from the neutral IGM. In this work, we forecast the CO-21cm cross-power spectrum from the EoR and its detectability. We consider a HI 21cm survey with AARTFAAC and a CO emission survey by COMAP, with an overlap of 12 deg² of the survey area. We use the outputs of a combination of N-body and radiative transfer simulation to obtain the mock 21cm and CO signals. Considering the planned COMAPpathfinder survey, which will detect the CO(2-1) signal from the EoR and 1200 hours of observation time on AARTFAAC, we find that all four CO emission models considered in the analysis are detectable in cross-correlation, where the model with the weakest signal, is not detectable in auto-correlation. The scenario improves for 2400 hours of observation with AARTFAAC, where the weakest CO emission model is detectable with ~2sigma significance in cross-correlation. For the planned COMAP-EoR survey, set to detect the CO(1-0) signal from the EoR, one might achieve close to 3sigma detection significance for the weakest model. We also considered a broad range of CO emission models and found that compared to the CO auto-power spectrum, the CO-21cm cross-power spectrum can detect a more extensive range of CO models, including weak ones. Therefore, cross-correlation can improve the detection of the LIM signals from the EoR.

Debasis Sahu	Poster	
Galaxies and Cosmology		
Present Matter Density Constraint on Black Hole Formation		
Black holes mass evolution depend on accretion of surrounding energy-matter and the quantum mechanical		
Hawking evaporation. In this work, we consider the availability of black holes in the framework of standard		
cosmology. The density of the black holes as compared to total density of the universe can be evaluated from many		
astrophysical processes. One of them is the present matter density of the universe. Considering this theory, we have		
evaluated the upper limit on the initial mass fraction of the black holes in different accretion efficiencies and found		
quite interesting results. Moreover, we have discussed the results in comparison with Brans-Dicke theory.		
	Galaxies and Cosmolog nt Matter Density Constraint on Bla end on accretion of surrounding rk, we consider the availability o ck holes as compared to total densi nem is the present matter density of itial mass fraction of the black hole	

ASI2025_406	Dhanush S R	Poster
Galaxies and Cosmology		
Tracing the change in structure and kinematics of the Small Magellanic Cloud due to interactions		

Tracing the change in structure and kinematics of the Small Magellanic Cloud due to interactions We present a detailed kinematic model of the Small Magellanic Cloud (SMC) using the Gaia DR3 proper motion (PM) data for distinct stellar populations, including young and old stars and star clusters. Our model reveals an almost edge-on SMC aligned across the north-south directions. Notably, the center-of-mass PM of the 1–2 Gyr old population exhibits a larger southward drift than other age groups. The kinematic structure varies with age, showing a flattened ellipsoidal distribution for older stars, while the younger stars form a rotating, elongated disk. We find substantial line-of-sight depth for the SMC, reaching over 30 kpc, with the eastern side closer to us. Residual PM maps highlight anomalies in the eastern, southeastern, southern, and western regions, with the newly detected anomaly in the southeast. Our analysis of the internal rotation in the young population shows pronounced tangential anisotropy in the RA direction relative to Dec. Our models suggest a significant influence of the Large Magellanic Cloud (LMC) on the SMC's present structure, where the LMC-SMC interactions play a great role in shaping the SMC's morphology.

ASI2025_80	Divya Pandey	Poster	
	Galaxies and Cosmology		
Star formation exists in all	l early-type galaxies evidence fro	om ubiquitous structure in UV images	
Recent surveys have demonstrat	ed the widespread presence of	UV emission in early-type galaxies (ETGs),	
suggesting the existence of star for	mation in many of these systems.	However, potential UV contributions from old	
and young stars, together with mode	el uncertainties, makes it challengi	ng to confirm the presence of young stars using	
integrated photometry alone. This	is particularly true in ETGs that a	are fainter in the UV and have red UV-optical	
colours. An unambiguous way of c	lisentangling the source of the UV	is to look for structure in UV images. Optical	
images of ETGs, which are dominat	ed by old stars, are smooth and de	evoid of structure. If the UV is also produced by	
these old stars, then the UV imag	es will share this smoothness, w	hile, if driven by young stars, they will exhibit	
significant structure. We compare t	the UV and optical morphologies c	of 32 ETGs (93 per cent of which are at z<0.03)	
using quantitative parameters (concentration, asymmetry, clumpiness and the Sérsic index), calculated via deep UV			
and optical images with similar resolution. Regardless of stellar mass, UV-optical colour or the presence of			
interactions, the asymmetry and clumpiness of ETGs is significantly larger (often by several orders of magnitudes) in			
the UV than in the optical, while the UV Sérsic indices are typically lower than their optical counterparts. The			
ubiquitous presence of structure demonstrates that the UV flux across our entire ETG sample is dominated by young			
stars and indicates that star formation exists in all ETGs in the nearby Universe.			

ASI2025_221	Dweepsa Das	Poster	
	Galaxies and Cosmology		
X-ray	and Sunyaev-Zeldovich Studies o	f AGN Feedback	
AGN feedback has long been know	n to have a significant impact on ga	laxy evolution. In this work, we use the Illustris-	
TNG simulations to study the effe	ect of AGN feedback on the inte	rgalactic medium (IGM) and the intra-cluster	
medium (ICM) by estimating the Sunayaev-Zeldovich (SZ) and X-ray properties of gas in the vicinity of AGN. The SZ			
signal and X-ray emission offer complementary probes for the thermodynamic properties of IGM. From the			
theoretical 2D projection of the SZ and X-ray maps, we propose to compare our simulation with the equivalent			
results obtained from SIMBA (Kar Chowdhury et al. 2022, Chakraborty et al. 2023) and develop a theoretical			
template for extracting cross X-ray-SZ signals from cosmological volume simulations and utilizing them for			
interpreting current and future observations.			

ASI2025_126	Gaurav Gawade	Poster
Galaxies and Cosmology		

Investigating Dual AGN/SMBH: A Study of Dual AGN Mrk739 in High Energy Astrophysics

Active Galactic Nuclei (AGN) are energetic centers of galaxies, driven by supermassive black holes (SMBHs). While each galaxy typically hosts one AGN/SMBH, recent observations indicate the possibility of galaxies containing dual AGN/SMBHs. These dual systems arise from the collision or merger of massive galaxies, resulting in dual AGN that can sometimes evolve into compact configurations known as binary AGN. Binary AGN are gravitationally bound dual AGN systems, which, in later stages, can emit gravitational waves. This study focuses on the image analysis of dual AGN. Our primary target is the dual AGN system Mrk 739 (Markarian 739), where we aim to gain deeper insights into its properties using data from Swift, NuSTAR, XMM-Newton, and Chandra observatories. The study involved image analysis to estimate the projected angular separation between the two AGN. We conducted a comparative analysis of the observatories' capabilities and their contributions to the study of dual AGN in Mrk 739 to be about 3.6 kpc. This research also discusses other prominent dual AGN systems and candidates, particularly the well-documented binary AGN, NGC 6240. By utilizing a multifaceted approach, we not only advance our understanding of dual AGN but also contribute to the broader field of galactic dynamics. This work lays the foundation for future studies aiming to identify and analyze more dual (and multiple) AGN systems, potentially unveiling further insights into galaxy evolution and dynamics.

ASI2025_711	Gourab Giri	Poster	
Galaxies and Cosmology			
Bridging Simulations & Observations: Insights into Large-Scale Environments and the Radio Galaxy Origins			
In a limited fraction of extragalactic jets, a captivating phenomenon manifests as they deviate from their straight-line trajectories,			
forming mirror-symmetric (TAILED) and inversion-symmetric (WINGED) structures. The complexity deepens with the discovery			
of resembling galactic microquasars. Extended jets that follow a straight-line trajectory, in certain circumstances, grow to giant			
scales (GRG), reaching the edge of the large-scale structures they inhabit. The origins of these distinct geometries remain			
intensely debated, especially with present-day observations challenging prior predictions. In this context, my works focus on			
modeling these sources using recently developed tools to unravel their topological origins. It examines the intricate			
interconnection of jet morphology with their ambient environment alongside complex processes within the central AGN.			
Emphasizing microscale processes, this investigation explores the impact of particle cooling and reacceleration on spectral and			
polarization maps, elucidating perplexing properties, e.g., anomalous spectral behavior in winged sources. This presentation			
thereby outlines novel scientific inquiries, and provides likely future directions for such jetted sources.			

ASI2025_542	Joseph P J	Poster
Galaxies and Cosmology		
Kernel dependence of the Gaussian Process reconstruction of late Universe expansion history.		

In this talk, I will discuss model-independent reconstruction of the expansion history of the late Universe. We use Gaussian Process Regression to reconstruct the evolution of various cosmological parameters such as H(z) and distance modulus of Type Ia supernovae using observational data to train the GP model. We look at the GP reconstruction of these parameters using stationary and non-stationary kernel functions. We examine the effect of the choice of kernel functions on the reconstructions. We find that non-stationary kernels such as polynomial kernels might be a better choice for the reconstruction if the training data set is noisy (such as H(z) data) as it helps to avoid fitting the error in the data. We also look at the kernel dependence of other cosmological parameters such as the redshift of transition to the accelerated expansion. This has been achieved by reconstructing the derivatives of the expansion history (H(z)) such as the deceleration parameter. We then compare the results with other datasets including the Type Ia supernova distance modulus.

ASI2025_133	Kanan Virkar	Poster
Galaxies and Cosmology		
Probing primordial physics signatures in 21 cm signal using morphological statistics		
21 cm signal from the cosmic dawn and epoch of reionization, when detected, will provide information about the primordial		
universe and the physical processes that took place during this time period, such as formation of the first stars and ionizing		
sources, the rate of clustering of matter to form galaxies and subsequent structures. Using simulated 21 cm signal in this redshift		
range using the publicly available 21cmFAST code we probe the signatures of primordial physics on this epoch by using		
morphological statistics, namely, Minkowski functionals, Minkowski tensors and Betti numbers. Compared to the traditional		
power spectrum these statistics contain additional information since they are higher order statistics. In particular we study the		
signatures of a phase of particle production during inflation on the 21 cm signal.		

ASI2025_380	Kanishka Arora	Poster	
Galaxies and Cosmology			
Understanding the large distance scale correlation between Metal Line Absorbers and Galaxies using			
Hydrodynamical simulations			
Understanding the distribution of gas around galaxies and its evolution over cosmic time is crucial to our knowledge of galaxy			
formation and evolution. Spectra of distant quasars offer a powerful tool to detect the intervening galaxies and intergalactic			
medium (IGM) via hydrogen and metal absorption lines. Recent studies have shown that strong, saturated metal absorption lines			
are effective tracers of enriched gas in and around galaxies, extending even to intra-group and cluster media. By combining deep			
imaging and spectroscopic surveys, we can now correlate metal absorption seen along the line of sight to quasars with			
foreground galaxies, allowing us to probe the extent of metal-enriched gas around these galaxies. We aim to reproduce these			
observational findings through semi-analytical and hydrodynamical simulations, focusing on the gas distribution around galaxies			
and the statistical properties of metal line absorbers. We will investigate how gas is distributed within galaxy halos and larger			
structures, and later analyze how this distribution evolves, leveraging simulations with known galaxy distributions and halo			
assignments. This approach will enable us to interpret the connection between galaxies and their surrounding enriched gas in			
unprecedented detail, helping to unveil the role of metal absorbers in tracing the cosmic web and galactic environments across			

ASI2025_398	Khushi Dixit	Poster	
A312023_396			
	Galaxies and Cosmolog	У	
Classification of Gravitational Wave Signals from LIGO Dataset			
The detection of gravitational waves h	as revolutionized astrophysics, provic	ling a novel way to observe cosmic events such as	
binary black hole mergers and neutro	on star collisions. This project aims	to develop a robust machine-learning model for	
classifying gravitational wave signals u	using the Gravity Spy dataset from Ka	aggle. The dataset contains 31,868 images divided	
into 22 categories, including both true	e gravitational wave events and vario	us types of noise interference. Our objective is to	
accurately distinguish between genuine gravitational wave signals and noise, while minimizing false positives and missed			
detections. To address this, we designed a comprehensive preprocessing pipeline to manage class imbalance, ensuring that the			
model is trained on a representative sample of signals. We also applied feature extraction techniques to emphasize key			
waveform characteristics. Through ex	xtensive experimentation, deep neur	al networks (DNNs) were identified as the most	
effective approach for differentiating between noise and true gravitational wave signals. The model was evaluated using metrics			
like accuracy, precision, and F1 score, focusing on optimizing performance through careful tuning of parameters. In addition, the			
project explored real-time detection enhancements, essential for astronomers to observe cosmic events more quickly and with			
greater precision. Ultimately, transfer learning models were incorporated to further boost performance, leveraging pre-trained			
networks to refine the classification of gravitational waves. This work not only advances automated gravitational wave			
classification but also lays the groundwork for improving real-time detection systems, which is critical for the growth of multi-			
messenger astrophysics.			

different redshifts.

ASI2025_39	Milind Sarkar	Poster	
Galaxies and Cosmology			
Multi-Wavelength Structural Parameter Analysis for 8 Million Galaxies in the Hyper Suprime-Cam Wide Survey			
Structural parameters for large numbers of galaxies, when determined simultaneously at multiple wavelengths, enable us to			
disentangle and understand the various physical processes involved in the formation and evolution of galaxies - e.g.,			
understanding star formation and quenching across different environments. We use the Galaxy Morphology Posterior Estimation			
Network (GaMPEN) to estimate posterior distributions (i.e., values and uncertainties) for the bulge-to-total light ratio, effective			
radius, and flux of 8 million galaxies in Hyper Suprime-Cam (HSC) Wide survey. We determine the structural parameters in the			
g, r, and i-bands of HSC and include galaxies with z<0.75 and m<23. GaMPEN had been used previously to estimate structural			
parameters using imaging at single wavelength bands. With this work, we demonstrate that GaMPEN can be effectively used to			
perform a multi-wavelength structural parameter analysis. We are currently using this catalog to study the variation of star			
formation in bulges and disks across the wide variety of environments included in HSC-Wide. In the summer of 2025, we will be			
publicly releasing our entire catalog of multi-wavelength structural parameters.			

ASI2025_556	Narendra Nath Patra	Poster	
Galaxies and Cosmology			
AGNs in dwarf galaxies			
Feedback is likely to play an essential role in the evolution of dwarf galaxies. Only stellar feedback processes have been thought			
to be active in dwarf galaxies, as large AGNs were seen to be hosted only by larger galaxies. However, recent observations			
identified a considerable number of dwarf galaxies with AGNs; hence, the AGN feedback processes could be important for the			
evolution of dwarf galaxies. These AGNs are primarily identified and studied using optical spectroscopic observations, with			
almost no radio observations. In this work, we present low-frequency, multi-band uGMRT observations of four AGN-hosting			
dwarf galaxies (J0100-01, J0906+56, J0954+47, and J1005+12), known for their bright and fast gas outflows. We detect radio			
emissions from AGNs in these galaxies and also observe potential jet-ISM interactions through HI observation in two of them. In			
this presentation, I will discuss the radio signatures of the low-powered AGNs in dwarf galaxies and their impact on the evolution			
of dwarf galaxies through feedback in the ISM.			

4010005 440		
ASI2025_148	Narendranath Layek	Poster
Galaxies and Cosmology		

Investigating the temporal and spectral behavior of the Seyfert 1.5 AGN Mrk 6.

We present an extensive temporal and spectral study of the Seyfert 1.5 AGN Mrk 6 using 22 years (2001–2022) of observations from XMM-Newton, Suzaku, Swift, and NuSTAR observatories for the first time. From the timing analysis, we found that the source exhibited variability of below 10 per cent for the shorter time scale (~60 ks) and above 20 per cent for the longer time scale (~weeks). A complex correlation is observed between the soft (0.5–3.0 keV) and hard (3.0–10.0 keV) X-ray bands of different observation epochs. This result prompts a detailed investigation through spectral analysis, employing various phenomenological and physical models on the X-ray spectra. Based on the overall results obtained from X-ray spectroscopy, we found that the nature of the Compton cloud changed with time. Although Mrk 6 displays characteristics of a changing-look AGN from optical observations, our X-ray spectral analysis did not show any significant variation in the X-ray (Lx~10^42 erg/s) and Eddington ratio (λ Edd~0.008) over a period of 22 years 22 years. This indicates that in the X-ray regime, the source did not change its behaviour during the observational period. We observed a complex variable structure of the obscuring absorber of Mrk 6, with two distinct types of partial absorbers: one neutral and the other ionized. The partially ionized absorber displays a dynamic behaviour characterized by a rapid change in its location. The neutral absorber, situated at a considerable distance from the central engine, remained relatively stable. Our long-term X-ray study of Mrk 6 provides valuable insights into the dynamic behaviour of the Compton cloud and the overall spectral characteristics of this changing-look AGN. It highlights the complexity of the obscuring material in the vicinity of the supermassive black hole.

ASI2025_717	Nasmi S Anand	Poster
Galaxies and Cosmology		

Exploring the Diffuse Emission in Low-Mass Galaxy Cluster : A Multifrequency Approach

The hierarchical structure formation model proposes that cosmic structures evolve through the accretion of matter and mergers, ultimately forming galaxy clusters. To comprehend the evolution of the universe, it's vital to study the formation and evolution of these clusters. When a galaxy cluster with a mass of 10^{14}solar masses undergoes major or minor merging, it dissipates potential energy through various mechanisms, including heating the intracluster medium (ICM), generating shock waves, inducing turbulence, and gas sloshing. These shock waves and turbulence can accelerate or re-accelerate electrons and protons, which then emit radio waves via synchrotron radiation when interacting with magnetic fields, exhibiting steep spectra (α <-1). Such emissions can be observed in the MHz to sub-GHz range and manifest as radio halos and relics in disturbed clusters, as mini-halos in relaxed clusters, and as radio phoenixes which can be present in both relaxed and disturbed clusters. Studying these emissions aids in understanding the evolution of magnetic fields and the particle acceleration mechanisms during mergers. The main theories for the acceleration of cosmic particles responsible for synchrotron radiation are turbulent and shock acceleration mechanisms or the hadronic origin of secondary particles. Increasing the number of observed diffuse emissions will enhance the statistical robustness of these theories. In the past, research has primarily focused on high-mass clusters (M>5*10^{14}solar mass) due to the limitations of earlier instruments. However, the uGMRT, with its extensive coverage area, offers exceptional sensitivity and resolution. Here, we have used archival data from the uGMRT band-3 observations of galaxy clusters along with their complimentary observations at MeerKAT L-band, ASKAP-low and TGSS archival images. We will present an update on one particularly interesting source of Abell 13 galaxy cluster with results both in radio and x-ray wavelengths.

ASI2025_109	Pavan Khadekar	Poster	
	Galaxies and Cosmology		
Effect of cluster en	vironment on the formation of Hyb	orid Morphology Radio Sources	
The sharp boundary in the Fanaroff	-Riley classification of radio source	es arising from AGN has been blurred by recent	
observations using LOFAR, MeerKA	T, uGMRT, and JVLA. These high se	ensitivity and high resolution observations have	
shown that some FR I and FR II so	urces have luminosities on the wro	ong side of the dividing line. The existence of a	
set of sources – Hybrid Morphology Radio Sources (HyMoRS) – containing within them exhibiting FR I and FR II			
structures on opposite side of the same active nucleus makes the situation even more intriguing. We are studying a			
sample of HyMoRS selected from the MeerKAT Galaxy Cluster Legacy Survey (MGCLS) with (i) known spectroscopic			
redshift, differing from that of the redshift of the host cluster by no more than 1000 km s–1 (ii) angular size $>$			
arcmin (iii) declination range [0, –50] degrees , and (iv) located at different distances from the center of the cluster.			
Radio images of the sample using the GMRT and MGCLS are being used to investigate the influence of the			
environment on the morphology. Here, we present preliminary results of these observations.			

ASI2025_709	Prajnadipt Ghosh	Poster	
	Galaxies and Cosmology		
On the	origin of X-shaped radio galaxies:	dual/binary AGN?	
X-shaped radio galaxies (XRGs) are	e enigmatic radio galaxies showing	two pairs of radio jets, unlike the normal radio	
galaxies with canonically one pair o	f radio jets. One hypothesis for this	s unusual structure is that the jets are launched	
by a pair of active supermassive b	olack holes (SMBHs) or the secor	dary lobes are simply relics of a previous jet	
actively, possibly resulting from a	galaxy merger. Such mergers ca	n fuel gas accretion into SMBHs, potentially	
leading to the formation of dual or b	leading to the formation of dual or binary AGNs, depending on the separation of the nuclei. This makes such sources		
primary candidates for detecting gravitational waves. Binary or dual AGNs have significant implications for merger			
dynamics, star formation, and AGN-driven outflows, underscoring the importance of studying these systems. We			
examine the hypothesis that galaxy mergers contribute to the X-shaped morphology and explore the potential of			
XRGs hosting dual or binary AGNs using the largest existing dataset of known X-shaped radio galaxies. Through			
emission-line fitting supported by our Very Long Baseline Interferometry (VLBI) observations, we have identified 39			
AGNs with dual peaks and X-shaped morphology, positioning them as ideal candidates for binary black hole			
systems. The results warrant future multifrequency VLBI observations to ascertain whether these sources indeed			
contain binary AGNs.			

ASI2025_741	Pranjal Chaturvedi	Poster
Galaxies and Cosmology		
Study of ELAIS N1 deep field using UVIT		
The young manning store are your bright sources of LN/ photons in early galaxies. The LN/ photons are emitted by		

The young massive stars are very bright sources of UV photons in early galaxies. The UV photons are emitted by heating up the surrounding gas to extremely high temperatures. This makes the UV photons a very good tracer for determining Star Formation Rate in the early universe. In deep fields, the UV photons from AGNs appear the same as UV photons from young massive stars. One important aspect of this study is to separate Active Galactic Nuclei (AGNs) and Star Forming Galaxies (SFGs). To achieve this, we use multiwavelength data and photometric redshifts of the deep field. The UV data of the multiwavelength observation was taken from Ultraviolet Imaging Telescope (UVIT) aboard the AstroSat. SDSS DR18 data for optical observations, IRAC SWIRE data for infrared observations and uGMRT data for radio observations. Here, we present the latest results from the radio and UV observations of ELAIS-N1 field done with uGMRT and ASTROSAT-UVIT. We show the analysed deep field in UV observations and present the catalogue of the sources. Using the catalogue we have performed the classification of SFGs and AGNs. We also derived the Star Formation Rate (SFR) using FUV data and the global SFR by performing SED fitting. The extinction-corrected SFR is derived at FUV wavelengths. These will be compared to different SFR derived from IR and radio in future studies, preliminary results will be presented.

ASI2025_613	Prasun Machado	Poster	
Galaxies and Cosmology			
New struc	tures in radio galaxies with RAD@	home Citizen Science	
Radio galaxies demonstrate varied	morphologies when relativistic jet	s, which are launched by accretion on to super	
massive black holes (SMBH), inter	act with the surrounding circumga	alactic or intra cluster medium. Jets expanding	
outwards experience various pro	ocesses like lateral ram pressu	re, vorticity and turbulence. Most of these	
morphologies can be easily classi	fied as FR I, FR II, XRG, DDRG, V	VAT, NAT ,etc. Here, we present four unusual	
morphologies which do fall out of t	morphologies which do fall out of the standard categories of radio galaxies. They have been identified from the low		
frequency surveys like the LoTSS with LOFAR and TGSS with GMRT. (1) An unusual "collimated synchrotron thread			
(CST)" of linear size ~ 600 kpc was observed. It's the third ever found CST, as per our literature survey. (2) We observe			
a rare doughnut-shaped swirl/ring at the end of linear radio filament. The linear size of this ring is ~ 90 kpc. (3) A radio			
jet "burl" is observed, at one of the lobes of an edge brightened FR II structure. The linear size of this burl is ~50-75			
kpc. The "burl" is neither located at the extreme tip of the lobe nor near the core. The structure of this "burl" is very			
compact but different from U-shaped kinks (4) A diffuse blob of linear size ~420 kpc was observed at the northern			
side of a double lobed radio galaxy. Structure and alignment suggest it to be a relic lobe however the southern relic			
lobe counterpart is missing. We are presenting these four radio sources with an analysis based on multiwavelength			

data and the process of discovery through citizen science research collaboratory approach.

ASI2025_417	Pratik Lonare	Poster	
	Galaxies and Cosmolog	у	
The Globular Cluster System of N	IGC 5018 Galaxy Group Using Dee	p, Multi-band Optical Imaging From The VST	
	Telescope		
Globular clusters (GCs) are com	pact stellar systems that trace g	alaxy formation and evolution, revealing key	
characteristics of their host galaxie	s. However, photometric studies o	f extragalactic GCs often face challenges from	
contamination, limited field covera	ge, and lack of multi-passband da	ata, complicating the acquisition of complete,	
accurate samples. This work prese	nts an analysis of the GC system in	the NGC 5018 galaxy group using deep, multi-	
band data from the VST Elliptical G	Alaxies Survey (VEGAS). Through	advanced tools and techniques developed for	
GC identification in large-scale opt	tical imaging, we confirm prior find	lings that NGC 5018, the brightest member in	
the group, hosts a relatively poor	GC population. The 2D GC dist	ribution map reveals a large intra-group GC	
population that aligns with bright ga	alaxies and the intra-group light. Th	e Radial GC density profile of NC 5018 shows	
an excess at a radius corresponding	an excess at a radius corresponding to a transition in diffuse light components, aligning with a nucleated low-surface		
brightness galaxy, likely an Ultra-Diffuse Galaxy candidate. This alignment, along with an observed GC plume			
extending from NGC 5018, suggests tidal interaction between these two galaxies. While other bright galaxies in the			
group lack significant GC populations, the radial profiles of NGC 5022 and NGC 5006 hint at GC systems blending			
into the intra-group population at large galactocentric radii. The GC color distribution in NGC 5018 lacks the typical			
bimodality; however, this feature appears in the intra-group population, with blue GCs extending further than red,			
suggesting tidal dispersion. Our findings provide important insights into the NGC 5018 group evolutionary history,			
highlighting the importance of extragalactic studies in understanding galaxy formation. This work sets the stage for			
future studies with Euclid and the Legacy Survey of Space and Time, which will offer deeper insights into galaxy			
assembly in the Local Universe.			

ASI2025_475	Preeti Kharb	Poster	
	Galaxies and Cosmology		
Are Jets in Lov	v Luminosity AGN the same as Jet	s in Radio Powerful AGN?	
The existence of jets in active gala	The existence of jets in active galactic nuclei (AGN) at the lowest luminosity end is not fully established. When jet-		
like features are detected in high re	like features are detected in high resolution radio telescope images, it still remains unclear if they are the same type		
of jets that are observed in radio galaxies or quasars. I will present observational results on "jets" in low luminosity			
AGN and discuss how similar or different they are from jets observed in the small minority of powerful AGN. These			
results are based on observations from a large range of radio telescopes going from VLBI arrays (VLBA, EVN,			
MERLIN) to the EVLA and GMRT which map spatial scales from milli-arcseconds to tens of arcseconds. The			
relationship between radio jets and emission-line gas will also be highlighted for the various AGN sub-classes, and			
whether this is the primary difference between different types of jets will be discussed.			

ASI2025_549	Protap Halder	Poster
Galaxies and Cosmology		

EFFECT OF DIPOLE MODULATION IN CMB IN ESTIMATING THE WEAK GRAVITATIONAL LENSING There is a clear indication of Cosmic Hemispherical Asymmetry (CHA) from the inferences of the data captured by both Planck Mission and WMAP. Basically, in one hemisphere there are more fluctuations in compare with other hemisphere in the observed CMB Maps. This indicates a clear statistical isotropy violation which can be incorporated mathematically by introducing Bipolar Spherical Harmonics with BipoSH Multipole L = 1. This mode(L=1) is known as Dipole Modulation in CMB Temperature map. In the standard Cosmology, CMB Temperature is considered to be Statistically Isotropic which contains its complete information in the CMB Temperature power spectrum. CMB Temperature is redistributed due Weak Gravitational Lensing while it is evolving in time by the effects of distributed matters which are gravitationally interacting with CMB photons. In Standard Cosmology, Projected Lensing Potential field is also considered to be statistically isotropic which contains its complete information in the lensing power spectrum. In my project, I am working with the power law in Dipole Modulation which is scale dependent. BipoSH Spectra is the generalization of power spectra which includes statistical non-isotropy. We have calculated the corrections in the BipoSH Spectra while introducing both the CMB Temperature and Weak lensing to be statistically non-isotropic in general. In the general expression, we have used a specific case of isotropy violation which is Dipole Modulation to estimate the effect of it on Weak Lensing field. I have made some computations and got some results and this research is under progress. We hope we will better estimate the weak lensing field by doing the corrections which will be valuable for further research in the field where Projected Lensing Potential field will be used.

ASI2025_209	Rahul Panchal	Poster	
	Galaxies and Cosmology		
The Circumgalactic E	Environment of a High HI Column D	Density Absorber at z = 0.614962	
Probing the circumgalactic mediur	n (CGM) is expected to improve o	ur un- derstanding of the missing baryons and	
metals problem at the galactic sca	metals problem at the galactic scale. Galaxies harbour a much smaller fraction of baryons than the expected value		
given by the cos- mological ratio $\Omega b/\Omega m$. They are also seen to possess a fraction of the metals they produce over			
their lifetime. Using a combination of HST /COS far-ultraviolet spectrum of a background quasar and V LT /MUSE			
integral field spectroscopic data, we study the as- trophysical origin of a high HI column density absorber at $z \approx 0.61$			
which seems to trace the extended gaseous envelopes of more than one galaxy at that redshift. By modeling the			
chemical and physical properties of the absorbing gas, and through comparisons of the morphology, orientation,			
SFR, stellar masses, and kinematics of the galaxies with the absorber properties, we present our conclusions on the			
most likely scenario responsible for the absorption.			

ASI2025_687	Rahul Musale	Poster	
	Galaxies and Cosmology		
Neutral hydro	gen gas and the unification schem	e in compact radio AGNs	
In the orientation-based unification sc	heme, the dusty torus surrounding the	e central active galactic nucleus (AGN) obscures a	
direct view of the nucleus when the li	ne of sight intersects it. In a sample (of 85 compact steep- and peaked-spectrum radio	
AGNs (projected linear sizes < 20 kpc	c), we examined the unification sche	me using the fraction of core radio emission as a	
statistical parameter for the orientation	n and HI 21-cm absorption properties	to probe the neutral atomic hydrogen residing either	
in the torus or the interstellar medium.	in the torus or the interstellar medium. We find that the sources classified as Quasars have high core fractions, low HI detection		
rates, and column densities compared	rates, and column densities compared to those classified as high-excitation radio galaxies (HERGs). For HERGs the detection		
rate and HI column density increase with the increasing core fraction. We also find that sources classified as low-excitation			
radio galaxies (LERGs) have the highest core fraction, but HI absorption detection rates and column densities are higher than			
Quasars. We discuss these results in the context of the unification scheme. The compact sources are believed to reside in			
dense, inhomogeneous, and potentially asymmetric gaseous environments. Asymmetries could arise due to both the orientation			
effect and the inhomogeneous gas environment. We looked into asymmetry by estimating symmetry parameters such as lobe			
separation ratio, flux density ratio of lobes, and misalignment angle. We find no significant dependence of HI properties on			
symmetry parameters.			

ASI2025_258	Rahul Verma	Poster
Galaxies and Cosmology		

Star formation characteristics of dwarf galaxies hosting active galactic nuclei via SED fitting

An important area of current research is the role of active galactic nuclei (AGN) activity in galaxy evolution. AGNs are known to have an impact on the galaxies that host them via a process called feedback. This feedback process can have an effect on the star formation characteristic of their host galaxies. The impact of AGN on their host galaxies has been extensively studied in massive galaxies that host AGN. However, much less is known currently about the prevalence of AGN in dwarf galaxies, and their potential role in driving galaxy evolution. Simulations also invoke supernova feedback in dwarf galaxies. Only very recently There is growing observational evidence of the presence of AGN in dwarf galaxies. While it is natural to expect the AGN in dwarfs to have an effect on the star formation characteristics of their hosts, similarities and differences, if any, on the impact of AGN on massive versus dwarf galaxies are unknown. In this work, we aim to characterise the impact of AGN on their host dwarf galaxies. The same exercise was also carried out on a control sample of dwarf galaxies without AGN, which had the same distribution of redshift and absolute brightness as their AGN counterparts. From a systematic and homogeneous analysis carried out on a sample of dwarf galaxies without AGN, we found that the star formation activity in dwarf galaxies with AGN is about a factor of two lower that of dwarf galaxies without AGN. This suggests that the presence of AGN in dwarfs has a negative feedback effect on their hosts, with quenching of star formation in them. Details of the results will be presented.

ASI2025_667	Rashmikanta Mantry	Poster	
	Galaxies and Cosmology		
Cosmolo	Cosmological implications of the chain early dark energy model		
There is a tension between the Hu	There is a tension between the Hubble constant values derived from observations of the early universe and those		
from the late universe. The early dark energy (EDE) models propose to relax the above tension by increasing the			
Hubble constant value obtained from the early universe observations. The EDE behaves as a slowly varying vacuum			
energy in the early universe. The energy density of EDE is initially negligible, then reaches the maximum around the			
matter-radiation equality, and then starts to dilute away after that. The Chain Early Dark Energy model is one of the			
models of EDE in which multiple phase transitions take place from a false vacuum to the nearest lower false			
by quantum tunnelling. In this work, we test the Chain Early Dark Energy model with cosmological observations.			

ASI2025_65	Reena Chaudhary	Poster	
	Galaxies and Cosmology		
Baryonic ecosystem around g	galaxies (BEINGMGII): Unveiling th	e Nature of Galaxies Harboring Cool Gas	
	Reservoirs.		
Galaxy formation and evolution is	tied to the physical state of gas	in the circumgalactic medium (CGM) and its	
interface with the intergalactic me	dium (IGM), which is determined b	y the complex interplay between inflows from	
the IGM and galaxy feedback. There	efore, a comprehensive understand	ling of the physical conditions of gas within and	
surrounding galaxies is of paramo	ount importance to understanding	the physical processes that regulate galaxy	
formation and evolution. Numerous	s efforts to trace the diffuse gas se	en in the quasar absorption line have revealed	
that intervening metal absorbers a	that intervening metal absorbers arise from multiple pathways, including gas inflows and outflows, the intragroup		
medium, and cool stripped gas fr	medium, and cool stripped gas from environmental processes. In particular, MgII absorbers, which trace cool,		
10^4K, metal-rich gas, are frequently observed across a wide range of impact parameters, up to 200 kpc. However,			
the notion that the absorption is caused by galaxies at close impact parameters remains viable because it is highly			
challenging to find such faint galaxies in the glare of a bright background quasar. I will discuss the possible origin of			
intervening metal absorbers, the distribution of gas in the circumgalactic medium, and how it relates to the absorber			
properties in general over a wide range of redshifts of $0.4 < z < 1.0$ and stellar masses from on our recent efforts			
based on SDSS survey and imaging data from DESI Legacy Imaging Surveys.			

ASI2025_641	Renu Devi	Poster	
Galaxies and Cosmology			
Understanding	g the role of stellar bar in quenching	g star formation in galaxies	
Around two-third of disk galaxies h	ost bars. In their later stages of evo	olution, bars can suppress star formation in the	
central regions of disk galaxies lead	ling to internal quenching. Our aim	is to understand the mechanisms of bar-driven	
quenching by studying barred galax	ties (redshift < 0.06) at various stag	ges of star formation (within the bar region) and	
evolutionary phases. Using spatiall	y resolved UV-optical color maps	, (NUV-r) color radial profiles & SED fitting, our	
goal is to infer the role of the bar i	n halting star formation. We analy	ze a sample of around 30 centrally quenched	
barred galaxies and find that the in	ternal regions exhibit redder color	rs (NUV-r > 4 mag, indicating the age of stellar	
population in these regions to be ol	der than >1 Gyr) and are quenched	l up to the bar length with their disks to be bluer	
in color establishing a direct link be	in color establishing a direct link between the presence of the bar and internal quenching. Most barred galaxies in our		
sample host pseudo bulges and do	not host AGN, indicating that the m	nost probable reason for the internal quenching	
of these galaxies is the action of stellar bar. Additionally, we compare our findings with two control samples: star-			
forming barred galaxies and fully o	quenched barred galaxies, which	evidently signify the role of the bar in internal	
quenching. Our results suggests that bars in their later stages of evolution turn the inner regions of galaxies redder,			
leading to quenching, with the effect being most prominent up to the ends of the bar and creating a region dominated			
by older stellar population. This may occur because bars have already funneled gas to the galactic center and the			
period of intense star formation is over. Individual galaxies from the above sample are further examined with deeper			
multiwavelength data providing a more comprehensive view of their star formation histories and structural evolution.			

ASI2025_392	Robin Thomas	Poster	
A012023_002			
	Galaxies and Cosmolog	\$Y	
Investig	Investigating the role of interaction events in galaxy evolution		
Interaction between galaxies signi	ficantly influence their evolution,	particularly affecting ongoing star formation in	
spiral galaxies. Interacting galaxy pairs are ideal for exploring these impacts. We study a sample of interacting			
galaxies in field environments at various interaction stages and are nearly face-on: NGC 1512/1510, NGC 2207/IC			
2163, NGC 4017/4016 and NGC 7753/7752. Using the UltraViolet Imaging Telescope (UVIT), we identified and			
analyzed star-forming regions in these galaxies, correlating these areas with neutral hydrogen (HI) distribution. Our			
analysis reveals localized enhancements in star formation surface density, aligned with HI distortions, likely			
indicating the influence of past and ongoing interactions on the star formation characteristics in these galaxies. We			
found convincing woof of the combined equilar and an improved extinue that contains that the cyclution of NCC			

found convincing proof of the combined secular and environmental actions that contributed to the evolution of NGC 1512. We also found that galaxies in our sample exhibit an SFR enhancement on the global scale. We expanded our study to a broader sample of interacting galaxies to understand if such enhancements hold true for a wider sample of interacting galaxies. We observed a moderate increase in star formation rate (SFR) with interaction class, reaching a peak enhancement factor of 1.8 in galaxies classified as mergers. We examined how SFR enhancement varies with pair mass ratio and pair separation. We observe a strong anti-correlation between the SFR enhancement and pair separation between the enhancement and pair separation, implying that while pair separation may limit SFR enhancement, mass ratio plays a more influential role. With this study, we present a comprehensive framework to understand the role of interaction in galaxy evolution. References: Robin et al. (2024a, b)

ASI2025_137	Romeo Pallikkara	Poster	
	Galaxies and Cosmolog	У	
Ultraviolet Luminosity Fund	ction of Very High-Redshift Galaxie	s Using James Webb Space Telescope	
The luminosity functions of high-re	edshift galaxies offer critical insig	nts into early galaxy formation, star formation	
efficiency, and the progression of	hydrogen reionization. We are st	udying the evolution of the ultraviolet galaxy	
luminosity function from redshift 7	.5 to 15 using photometric and sp	ectroscopic data from the James Webb Space	
Telescope (JWST). Our analysis util	lizes archival images from the JWS	Near-Infrared Camera, covering 7 wavebands	
across a 90-square-arcminute are	ea of the sky. We identified ~51 g	alaxies within the redshift range $7.5 < z < 8.5$	
through Lyman break selection, wi	through Lyman break selection, with redshifts confirmed via spectral energy distribution fitting to photometric data.		
To measure the luminosity function, we applied completeness corrections across all observed fields, using injection-			
recovery simulations to account for observational limitations and biases. Where available, some photometrically			
selected galaxies were cross-referenced with NIRSpec spectroscopic data for validation. Using our measured			
luminosity function, we estimated a star formation rate density consistent with recent studies. Building on this, we			
plan to extend our analysis to even higher redshifts, up to z = 15, to explore the evolution of the galaxy luminosity			
function, star formation rate density, and their influence on hydrogen reionization.			

ASI2025_506	Sachindra Naik	Poster	
	Galaxies and Cosmology		
Propert	ies of a low-mass active galactic r	nucleus UGC 6728	
We performed a comprehensive an	alysis of data from 15 years of X-r	ay observations of a low mass bare AGN, UGC	
6728. Our study encompasses bot	th spectral and temporal aspects	of this source. The spectral properties of this	
source are studied using various pr	nenomenological and physical mo	dels. From our study, we conclude that (a) the	
observed variability in X-ray lumino	sity is not attributed to the hydrog	en column density N_H as UGC 6728 exhibits	
a bare nucleus, implying a negligibl	e N_H contribution along the line	of sight, and (b) the spectral slope in the X-ray	
band demonstrates a systematic	variation over time, indicating a	transition from a relatively hard state to a	
comparatively soft state. We propo	ose that the underlying accretion d	ynamics around the central object account for	
this behavior. By performing X-ray	this behavior. By performing X-ray spectral fitting, we estimate the mass of the central supermassive black hole in		
UGC 6728 to be 7.13 +/- 1.23 x 10^5 M_Sun. Based on our spectral and temporal analysis, we suggest that UGC			
6728 lacks a prominent Compton hump or exhibits a very subtle hump that remains undetectable in our analysis.			
Furthermore, the high-energy X-ray photons in this source are likely to originate from the low-energy X-ray photons			
through inverse Compton scattering in a Compton cloud, highlighting a connection between the emission in two			
energy ranges. We noticed a strong soft excess component in the initial part of our observations, which later reduced			
substantially. This variation of soft excess is explained in view of accretion dynamics.			

SI2025_565	Sameer Salunkhe	Poster	
	Galaxies and Cosmology		
Unveiling a Cosmic Giant: First	uGMRT Detection of a Radio Mega	ahalo in Galaxy Cluster PLCKG287.0+32.9	
This study reports the first detection	n of a radio megahalo in the mass	ive merging galaxy cluster PLCKG287.0+32.9,	
using deep, wide-band uGMRT obs	servations at 300-850 MHz. The cl	uster exhibits a complex array of diffuse radio	
emissions, including a large radio	halo, two relics, and filamentar	y structures, which provide insights into the	
dynamics of merger-driven particle	re-acceleration. These sensitive of	observations reveal the radio halo extending to	
\sim 3 Mpc, doubling the previously kn	\sim 3 Mpc, doubling the previously known extent and reaching the cluster's R500 radius along an intergalactic filament.		
The radial surface brightness profile shows the halo is two component halo - inner component is typical giant radio			
halo and outer one is megahalo, both possibly energised by merger induced turbulence. These findings represent the			
first megahalo detection at frequencies above 144 MHz, paving the way for further high-frequency studies to enhance			
our understanding of the origins and evolution of megahalos in merging galaxy clusters. Along with this, the detected			
relics exhibit asymmetric positions relative to the cluster centre, with the northern relic showing an unusual			
"inverted" structure, spectral steepening on both sides, and signs of re-energised plasma from a nearby radio galaxy.			
This relic's atypical orientation and spectral features likely result from an in-falling substructure bending the outgoing			
shock inward, as suggested by optical studies identifying substructures within the cluster.			

ASI2025_578	Sana Begum Shaikh	Poster	
	Galaxies and Cosmology		
	Galaxies in Dense Cluster Envi	ronment	
We calculated the Stellar Mass Fu	nctions (SMF) of the field galaxies	s and cluster galaxies to see the impact of the	
cluster environment on the galaxy	evolution. SMF is the number de	ensity of galaxies as a function of their stellar	
masses, it depends on factors such	as the galaxy's redshift and enviro	nment, whether it resides in a field or a cluster.	
To study the effect of the environr	nent on the SMF of galaxies we u	sed the galaxy data set containing around 31	
million galaxies from KiDS+VIKING	-450 (KV450) covering \sim 341 deg s	q. area distributed over five patches on the sky	
and the cluster data from the eFED	S survey with coverage of \sim 140 de	eg sq. area. eFEDS overlaps with one of the five	
patches of KV450 called G9, from	this overlap we defined cluster g	alaxy samples for a total of 105 clusters with	
redshifts ranging from (0.385, 0.8) a	redshifts ranging from (0.385, 0.8) as they have KV450 galaxy coverage within 5R500, we considered the galaxy as a		
part of a cluster if it's within the cluster-centric radial bin and cluster redshift range $z\pm\Delta z$. We calculated the SMF of			
KV450 using the 1/Vmax method (Schmidt 1968) at different redshif	t bins and observed the shape of the SMF. We	
estimated the cluster volumes by c	reating the HEALPix map of the su	rveys. Using the cluster volume calculated the	
SMF for cluster galaxies in two redshift bins considering the median redshift within different cluster-centric radial			
bins and compared to quantify the environmental effect on SMF of cluster galaxies as we move away from the cluster			
center, also calculated the SMF by dividing the clusters depending on their masses and luminosity to see the effect			
of cluster's total mass and luminosity on cluster galaxy SMF.			

ASI2025_531	Sandeep Kumar Kataria	Poster	
	Galaxies and Cosmology		
How do the successive buckling	events affect a galaxy bar and ste	llar disc? Potential observables for spotting	
	buckling		
Until now, observations have caug	ht up only a handful of galaxies in	ongoing buckling action. Interestingly, N-body	
simulations over the past several of	lecades show that almost every b	par buckles or vertically thickens as soon as it	
reaches its peak strength during its	s evolution and leads to box/pean	ut/x (BPX) shapes. In order to understand the	
effect of multiple buckling events	on the observable properties of ga	alactic bars and discs, we perform an N-body	
simulation of a Milky Way-type dis	c. The axisymmetric galaxy disc fo	orms a bar within a Gyr of its evolution and the	
bar undergoes two successive buc	kling events. We report that the tin	ne-spans of these two buckling events are 220	
Myr and 1 Gyr, which have almost similar strengths of the bending modes. As a result of these two buckling events,			
the full lengths of BPX shapes are	around 5.8 and 8.6 kpc, which are	around two-thirds of the full bar length at the	
end of each buckling event. We fin	d that the first buckling occurs at	a smaller scale (radius ~ 3 kpc) with a shorter	
time-span affecting the larger length-scales of the disc, which is quantified in terms of changes in m=2 and m=4			
Fourier modes. While the second buckling occurs at larger scales (radius ~ 6 kpc) affecting the inner disc the most.			
Finally, we provide observable kinematic signatures (i.e. quadrupolar patterns of the line-of-sight velocities), which			
can potentially differentiate the successive buckling events.			

ASI2025_286	Satyapriya Das	Poster	
	Galaxies and Cosmolog	§y	
Impact of AGN Fee	edback on Star-formation: A Multiv	vavelength Study of NGC 4258	
NGC 4258 (M106) is a Seyfert 1.9	SAB(s)bc type galaxy, distinguishe	ed by its striking dual spiral arms extending in a	
north-south orientation. Multi-way	elength observations have reveale	d two additional "anomalous" arms that begin	
aligned in the north-south direction but curve northeast and southwest, displaying bifurcations in both X-ray/radio			
wavelengths. In this work, we use	wavelengths. In this work, we use multi-wavelength data to understand the impact of AGN feedback on the star		
formation and ISM in the galaxy. We use AstroSat/UVIT observations to estimate the star-formation rates and stellar			
ages of the star-forming regions across the galaxy. Furthermore, we employ the JWST IR data to investigate the			
spatial distribution and kinematics of molecular/ionised gases and PAHs in the galaxy. In this poster, we present the			
results from a comprehensive multi-wavelength assessment of the dynamic interplay between star formation and			
AGN in NGC 4258.			

ASI2025_89	Shreya Pithva	Poster
Galaxies and Cosmology		

Systematics of the Multi-Frequency Properties of Accreting Supermassive Black Holes in the Local Universe Supermassive black holes (SMBHs), with masses over 10^6M (where M (represents the Sun's mass), tend to reside in the centres of most galaxies and understanding their physics is essential to our understanding of galaxy evolution. A significant characteristic of SMBHs is the M- σ relationship, i.e., the correlation of the SMBH mass (M) with the stellar velocity dispersion (σ) of the bulge of the host galaxy. This empirical relation suggests a profound connection between black hole growth and galaxy growth, implying co-evolutionary processes that drive the formation of both the galaxy's bulge and its central SMBH. Accreting supermassive black holes (ASMBHs or Active Galactic Nuclei-AGN), i.e., SMBHs that are actively drawing in mass from their surroundings, adhere to similar scaling relationships. During accretion, ASMBHs release intense radiation and powerful outflows, influencing the host galaxy by regulating star formation and gas dynamics, potentially reinforcing the M- σ relationship. Application of the Baldwin, Phillips & Terlevich (BPT) diagnostics to the analysis of the emission lines can be used to discern the ionization processes in galaxies with ASMBHs, highlighting how SMBHs influence the overall galaxy characteristics, especially in the circumnuclear environment. Our current work investigates about 130 galaxies with ASMBHs at redshifts less than 0.02 that have spectroscopic images of their circum-nuclear environments obtained using an Integral Field Unit. Using multi-frequency and multi-scale follow-up data, we examine the relationship between galaxy morphology, gas excitation, star formation, and the characteristics of their synchrotron jets. This analysis aims to enhance our understanding of the mechanisms driving SMBH scaling relationships and the role of feedback mechanisms in shaping galaxy structure and evolution.

ASI2025_237	Silpa Sasikumar	Poster
Galaxies and Cosmology		

Event Horizon and Environs (ETHER) Database: Imaging Jet Bases in the Gold Sample

Low-luminosity AGNs (LLAGNs) are characterized by low Eddington accretion rates, guasi-spherical accretion inflow in the innermost tens of gravitational radii (R_g), and bipolar relativistic jets launched within 100 R_g of the supermassive black hole (SMBH). LLAGNs vastly outnumber ordinary AGNs, making them vital for demographic studies of structures and physics in the innermost hundreds of R_g, as well as for measurements of BH masses, spins, and shadows. We are currently developing a curated database of potential LLAGN targets for the Event Horizon Telescope (EHT) and the next-generation Event Horizon Telescope (ngEHT) studies: Event Horizon and Environs (ETHER). Originally built for target selection, ETHER leverages the transformative science emerging from M87 and Sgr A* to inform demographic studies of the local SMBH population and potentially resolve more BH shadows. ETHER's large size (~4 million objects, with ~3 million having BH mass estimates), and extensive multifrequency radio and X-ray flux data and SED information, make it valuable for a wide range of scientific goals. From this parent sample, we have identified a "Gold Sample" consisting of the largest SMBH rings with the brightest estimated EHT fluxes from their jets and accretion flows. This sample, which we have been monitoring using VLBA, GMVA, EHT, and ALMA, covers a range of BH masses, Eddington accretion fractions, jet powers, and orientations. It will help trace the merger and accretion history of SMBHs and their shadows, providing strong and unique tests of gravity. I will introduce the ETHER sample and present preliminary results from modeling the jet bases of the Gold targets. These models will help test theoretical models of jet physics, predict observable properties for ongoing and future EHT observations, test the limits of EHT capabilities, and assess the feasibility of near-future ngEHT observations.

ASI2025_29	Sipra Hota	Poster	
Galaxies and Cosmology			
Morphology and kinematics of	young population in the Small Mag	ellanic Cloud: Insights from UVIT/AstroSat	
The Small Magellanic Cloud (SMC)	is one of the nearest gas-rich dwa	rf satellite galaxies, on its first passage around	
the Milky Way (MW). Its evolution i	s significantly influenced by intera	ctions with the Large Magellanic Cloud (LMC)	
and the MW, particularly due to its	s much smaller dynamical mass c	compared to these larger galaxies. The SMC is	
characterized by active star formati	on in a metal-poor environment, ar	nd studying the SMC in the ultraviolet (UV) band	
is crucial for understanding its rec	ent evolution amid these interac	tions. In this work, we present a catalog of \sim	
76,800 far-ultraviolet (FUV) sourc	es observed towards the SMC us	ing the Ultra Violet Imaging Telescope (UVIT)	
onboard AstroSat. From these obse	onboard AstroSat. From these observations, we compiled a catalog of \sim 62,900 probable SMC members, which are		
primarily main-sequence, giant, and	d subgiant stars. We identified four	young stellar populations (Young 1 (Y1), Young	
2 (Y2), Young 3 (Y3), and Blue Loop (BL) stars) from the Gaia optical color- magnitude diagram to investigate the			
morphology and kinematics of the young population of SMC. These populations reveal a clumpy morphology			
characterized by a broken bar, a sh	ell-like structure, and the inner SM	C Wing. A two-dimensional kinematic analysis	
using proper motion (PM) data reveals that the Y2 and Y3 populations consist of two kinematically distinct sub-			
populations with low and high PM dispersion. In contrast, the Y1 and BL stars display two distinct groups with low			
PM dispersion. Notably, a kinematic disturbance is observed in the Right Ascension direction for stars younger than			
approximately 150 Myr in the eastern region, while no significant disturbance is detected along the declination. These			
findings provide valuable insights into models of LMC-SMC interaction.			

ASI2025_637	Sourav Das	Poster	
	Galaxies and Cosmolog	ŷ.	
Ethe	rington distance-duality relation us	sing SN and BAO	
The Etherington distance-duality re	elation, relates the luminosity dista	nce D_L and angular diameter distance D_A by	
redshift z such that $D_L = D_A^*(1)$	redshift z such that $D_L = D_A^{(1+z)^2}$. This relation is derived purely under the assumptions of photon number		
conservation and a metric theory of gravity. In the absence of such non-standard mechanisms, the Etherington			
relation can be used to test for systematic errors in cosmological data. The luminosity distance D_L is obtained from			
$\label{eq:thm:thm:type-last} Type-la supernovae, which serve as standardizable candles, while the angular diameter distance D_A is derived from$			
Baryon Acoustic Oscillations (BAO). Recently the DESI collaboration has claimed a deviation of dark energy from a			
cosmological constant. In light of this, we present results on a test of the different Supernova and BAO data used in			
the DESI cosmological analyses.			

ASI2025_302	Sukanta Ghosh	Poster
	Galaxies and Cosmolog	У
Evolution of Gala	ctic Magnetic Fields and Scaling R	elations in Radio Continuum
Magnetic fields are ubiquitous in th	e universe, with galaxies hosting l	arge-scale ordered magnetic fields and small-
scale random fields, typically with	micro-Gauss (µG) strength. Dynar	no theory provides a theoretical framework for
the amplification and maintenance	e of these magnetic fields. The dy	namo mechanism depends on various galaxy
properties, which vary significantly	y across galaxies and evolve with	h time, making it essential to consider these
variations while studying their mag	netic field evolution. A compreher	sive understanding of galactic magnetic fields
thus requires statistical analysis of large galaxy samples both locally and at high redshifts. For this study, we examine		
statistical scaling relations between galactic magnetic field observables and fundamental galaxy properties. By		
combining GALFORM, a semi-analytic galaxy formation model, with MAGNETIZER, a dynamo model that produces		
a 1D ISM model over millions of galaxies, we investigate the evolution of magnetic fields in galaxies from a statistical		
perspective. Our study focuses on synchrotron flux density (SI), a key observable linked to the emission from		
relativistic electrons spiralling around galactic magnetic fields, and its correlation with galaxy properties such as star		
formation rate (SFR) and rotational speed (Vrot) of the flat part of the rotation curve. We aim to generate theoretical		
predictions and synthetic data that can be directly compared to observations.		

ASI2025_644	Sumana Nandi	Poster
Galaxies and Cosmology		

A new population of DDRG: several episodes of jet activity in multiple directions

For most double-double radio galaxies (DDRGs), two distinct pairs of radio lobes and their common central active galactic nuclei (AGNs) are aligned along the same axis. The change in the direction of the new restarted jets have been observed in the case of misaligned DDRGs. These DDRGs are small in number, but are important to study as they can be hosted by a merger system of supermassive binary black holes. Using high frequency and low frequency radio surveys, we identified a new sample of jet reorientation candidates characterized by 20 to 90 degree misalignment between the successive jet outflows. We carried out low and high frequency radio observations of these sources with GMRT, VLA and VLBI. The optical spectroscopy data were collected through the HCT and DOT and SDSS. The GMRT images detect extremely faint, outer lobes. VLA and VLBI images help to detect inner double structure and resolve central core. The estimated spectral indices, spectral age confirms their episodic nature. The emission line splitting in the optical spectra, the bulge disk decomposition of the host galaxy indicates the possibility of merger of the host. The radio structure, applied kinematic jet precession model, variation of the flux density, and spectral shape can potentially be consistent both with the signature of a young radio source or a binary black hole at the center of these sources. Our study revealed that the misaligned DDRG population may represent the pre-merging stage where two nearby black holes interact at small separation due to dynamical friction. While the DDRGs with linear outflow are in the post merging stage.

ASI2025_514	Suraj Kumar Pati	Poster	
Galaxies and Cosmology			
Cosmological Dynamic	s and Accelerated Expansion in St	arobinsky-Type Metric f(R) Gravity	
The discovery of accelerated expan	ision of the universe has become or	ne of the most profound phenomena in modern	
cosmology. To account for this u	nexpected observation, two prim	ary approaches are widely discussed in the	
scientific literature. The first approa	ach involves postulating the existen	ice of an unknown form of energy with negative	
pressure, referred to as "dark ene	rgy". But its nature and origin ren	nain largely unknown and extend beyond the	
explanatory power of general relati	ivity. The second approach seeks t	o explain accelerated expansion by modifying	
the fundamental theory of gravity	itself. In this framework, alternat	tive gravitational theories aim to account for	
observed cosmic acceleration with	hout invoking dark energy. Due to	the unresolved nature of dark energy, these	
modified gravity theories have gain	ed attention as a promising alterna	ative for explaining the accelerated expansion	
of the universe In the present work,	we investigate the implications of	the currently observed accelerated expansion	
of the universe on its evolution w	vithin the framework of power-lav	v-based Starobinsky-type metric f(R) gravity.	
Particularly, our study focuses on	Particularly, our study focuses on the evolution of the universe through key cosmological parameters, such as		
Hubble parameter, deceleration parameter and jerk parameter etc. Our analysis reveals that the phenomenological			
constant M^2 in the Starobinsky model has a very small value of 0.6538t_0^(-2), where t_0 represents the current			
age of the universe. Additionally, we identify that the transition from a decelerated to an accelerated phase of			
expansion likely occurred around 0.711t_0. This accelerated phase is predicted to persist well into the distant future,			
with an increasing rate of expansion as suggested by the monotonic behavior of the jerk parameter. Our results			
provide insights into the cosmological dynamics governed by modified gravity, indicating that the universe's			
accelerated expansion will continue to evolve at an accelerating rate.			

ASI2025_560	Suryakanta Swain	Poster	
	Galaxies and Cosmology		
Effect of Interacting Dark Energy on the Evolution of Schwarzschild Black Hole in Loop Quantum Cosmology			
General theory of relativity and quantum theory are the two most successful and well trusted theories of modern			
physics. General theory of relativity provides the idea about gravitational force and its implication in cosmological			
scales whereas the quantum theory deals with the physics of matter in microscopic scales. None of these theories,			
however, can fully explain this complex issue, like the singularity problem, that arise in standard cosmology. In the			

however, can fully explain this complex issue, like the singularity problem, that arise in standard cosmology. In the present scenario it is often believed that quantum gravity theory plays a leading role to solve this above problem. Loop Quantum Gravity (LQG) is one of the unique features of quantum gravity theories. LQG is completely non-perturbative, explicit background independent approach to quantum gravity. Generally, implication of LQG on cosmology for the study of our universe is called as Loop Quantum Cosmology (LQC). On the other hand, a black hole is a region of space where the gravity is strong enough that not even light can escape from it and Schwarzschild black hole is the simplest kind of black hole, which is characterized by its mass only. In this work, we try to explain the evolution of Schwarzschild black hole by taking interacting dark energy approach in loop quantum cosmology. Our analysis predicted that in the theory of LQC, the evaporation time of a Schwarzschild black hole is quicker and hence its life span decreases in the presence of interacting dark energy. Again we have found that the accretion efficiency is ineffective in the interacting dark energy based LQC. Further, we have investigated the limits on black hole formation imposed by observed astrophysical constraints.

ASI2025_512	Suvajit Sardar	Poster	
	Galaxies and Cosmology		
Decoding the morphology and kine	matics of the neutral gas in the Sa	cred Mushroom collisional ring galaxy system	
Collisional Ring Galaxies (CRGs) a	re a rare class of galaxies that for	m when an intruder galaxy passes through the	
disk of the target galaxy, creating a	characteristic ring-like structure.	They are thus a result of galactic-scale drop-	
through perturbation experiments.	The 21cm neutral hydrogen line (HI) is a powerful tracer that can probe the gas	
kinematics of the neutral phase sp	panning the interstellar medium (IS	SM), inner circumgalactic medium (CGM) and	
the intra-group medium (IGrM). The	e relatively simple interaction conf	igurations of CRGs allow us to investigate how	
galactic interactions impact star fo	rmation, gas kinematics, morphole	ogy, and the larger baryon cycle shaping galaxy	
evolution. Yet, the study of HI in C	RGs remains limited, leaving key	questions about the large-scale changes that	
happen to their gas-star formatio	happen to their gas-star formation cycles unanswered. The MeerRings program using the SKA-mid-precursor,		
MeerKAT radio telescope, will perform the first census of the HI in a substantial sample of CRGs in the local universe.			
In this work, we present results from	n the HI study of the Sacred Mushre	oom CRG, which hosts a stellar disc that spans	
40 kpc across the major axis. MeerKAT's unparalleled sensitivity and resolution enable us to map, for the first time,			
the distribution and kinematics of HI down to \sim 3 × 10 ⁽¹⁹⁾ cm ⁽⁻²⁾ at \sim 5.4 kpc spatial and \sim 5.5 km/s spectral			
resolutions. Based on our resolved analysis of the gas morphology and kinematics, we present our hypothesis on			
how the galaxy interaction has led to the exchange of gas between the target galaxy and the intruder, and the			
subsequent ring formation resulting from the density waves triggered by the perturbation.			

ASI2025_445	Vaishali R	Poster	
	Galaxies and Cosmology		
Inference of ou	r Local Motion from CMB Polariza	tion - A Bayesian Approach	
The dipole is the biggest fluctuation of	The dipole is the biggest fluctuation observed in the Cosmic Microwave Background(CMB). This is caused by the motion of our		
frame, the observer frame. The aberration and modulation of the CMB photons due to our motion also introduces violation of			
Statistical Isotropy(SI) which can be seen in the non-diagonal covariance matrix of the signal. The correlations in the adjacent			
multipoles can be elegantly quantified by the dipolar spectra of the Bipolar Spherical Harmonics(BipoSH). In this work the			
covariance matrix along with the signal is inferred using Hamiltonian Monte Carlo(HMC) method, a Markov Chain Monte			
Carlo(MCMC) algorithm. We first do this on a simulated map and then extend the analysis to polarization data maps. This work			
is a first step in exploring the violation of SI in CMB polarization.			

ASI2025_287	Vijayakumar H Doddamani	Poster
Galaxies and Cosmology		
Slitless Spectroscopy of Nearby Milky Way Satellites Using Himalayan Chandra Telescope		

Multi-object spectroscopy is crucial for efficient satellite observations, optimizing telescope time usage. Telescopes lacking multi-slit or multi-fiber capabilities can employ slitless spectroscopy to cover wide fields of satellite galaxies. Slitless spectroscopy eliminates the need for traditional slitmasks and enables comprehensive spectroscopic examinations of all the sources within a field without significant pre-planning. Our study conducted slitless observations of nine nearby Milky Way satellite galaxies utilizing the 2-meter Himalayan Chandra Telescope - Hanle Faint Object Spectrograph and Camera (HCT-HFOSC). We experimented with various filter and grism combinations to mitigate one of the main drawbacks of slitless spectroscopy: the spectral overlap. We present a semi-automated Python routine to reduce the slitless data. Furthermore, we discuss the challenges and constraints of slitless spectroscopy using the 2-m class telescope of different observational configurations used in our study.

ASI2025_696	VINEET OJHA	Poster	
	Galaxies and Cosmology		
Temporal and spectral variability	in gamma-ray and non-gamma-ra	ay detected Seyfert 1 galaxies: Insights from	
	optical and infrared		
Variability across the electromagnetic	spectrum is a hallmark of active galac	tic nuclei (AGNs), offering unique insights into their	
emission mechanisms on spatial scale	es that are currently inaccessible to o	direct imaging. This variability serves as a powerful	
diagnostic tool, revealing critical info	rmation about AGN physics, includi	ng the spatial and temporal structure of emitting	
regions, accretion disk dynamics, and	the properties of the central superma	ssive black hole. This study presents a systematic	
investigation of flux and color variabilit	y in optical and infrared wavelengths t	for a redshift-matched sample comprising gamma-	
ray-detected Narrow-line Seyfert 1 ga	laxies (gNLS1s), non-gamma-ray-de	tected NLS1s (ngNLS1s), and a control sample of	
gamma-ray-detected Broad-line Seyfe	rt 1 galaxies (gBLS1s). Utilizing multik	band light curves from the Zwicky Transient Facility	
(ZTF) in the optical domain and the Wid	de-field Infrared Survey Explorer (WIS	E) in the infrared, we observe that both gNLS1s and	
gBLS1s exhibit significant variability ov	ver timescales ranging from days to y	ears across both wavelength regimes. In contrast,	
ngNLS1s display minimal variability, e	ngNLS1s display minimal variability, even on extended timescales. Our high-cadence color variability analysis using ZTF data		
reveals "bluer when brighter" (BWB) a	reveals "bluer when brighter" (BWB) and "redder when brighter" (RWB) trends in 20% of gBLS1s, while 53% of gNLS1s exhibit		
a BWB trend. Similarly, 43% of ngNLS1s display a RWB trend. In the WISE W1-W2 color variability analysis, we find that a small			
fraction(13%) of gNLS1s and 30% of gBLS1s show BWB trends, whereas a predominant fraction(93%) of ngNLS1s exhibit BWB			
trend. These findings point to distinctive physical mechanisms in each AGN class, which appear to influence their flux and color			
variability across wavelengths. We will discuss potential physical mechanisms driving the observed flux and color variability in			
gamma-ray- and non-gamma-ray-detected Seyfert 1 subclasses, providing a deeper understanding of the complex processes			
shaping AGN variability in the optical and infrared.			

ASI2025_571	Vishal Sanjay Kale	Poster	
	Galaxies and Cosmolog	λγ	
Mechanical AGN feedba	ck in RXCJ1558.3-1410 cluster an	d its connection with radio mini-halo	
Abstract This systematic study of	a RXCJ1558.3-1410, cool core cl	uster based on X-ray and radio data aimed to	
investigate role of the AGN in the cl	luster environment. This analysis c	confirms a previously reported X-ray cavity at \sim	
36 kpc and reports a newly detec	cted X-ray cavity at \sim 42 kpc nor	th-west of the X-ray peak. This analysis also	
identifies the presence of a cold fro	identifies the presence of a cold front at \sim 72 kpc and a sloshing arm, probably due to the minor merger. The surface		
brightness reveals a sharp edge at the location of the cold front and exhibits discontinuity in the temperature profile.			
The broken power law analysis confirms its association with the cold front. The mechanical power deposited in the			
form of X-ray cavities \sim 6.0 ×10^44 erg s-1 is capable enough to heat the ICM and correlates well with the 1.4 GHz			
radio power, further compensating to offset radiative losses. Considering the morphological properties of the			
extended radio emission at 325 MHz, we classify RXCJ1558.3-1410 as a host to a radio mini halo. Key words:			
galaxies: clusters: individual: RXCJ1558.3-1410 X-rays: galaxies: clusters, galaxies: clusters: intracluster medium,			
radio continuum: general			

Posters in Facilities, Technology and Data Science

ASI2025_638	Abhay Kumar	Poster	
	Facilities, Technologies and Data science		
Development of a	1-D position sensitive absorber for	r a Compton X-ray polarimeter	
The scientific potential of polarime	try has long been recognized, but d	ue to the challenges in measuring polarization,	
the field, especially in hard X-ray	s, still remains largely unexplored	d. With the recent developments in detector	
technologies, it is, however, now p	oossible to develop sensitive hard	X- ray polarimeters. One such example is the	
Compton X-ray Polarimeter (CXPC	DL), a prototype developed at the	Physical Research laboratory in India, which	
consists of a plastic scintillator as	an active scatterer surrounded by	CsI(Tl) scintillators in a cylindrical array with Si	
photomultiplier (SiPM) readout from	n one side. The sensitivity of the ir	nstrument can be improved significantly by the	
use of faster and better light yie	ld scintillators like Nal as abso	rbers. Further, a position-sensitive scatterer	
surrounded by position-sensitive at	surrounded by position-sensitive absorbers can also provide spectroscopic information by estimating the interaction		
position along the length and from	the known energy depositions in	the detectors. The measurement of the polar	
scattering angle also improves the	scattering angle also improves the polarimetric sensitivity of the instrument by reducing the systematic effects		
introduced by the off-axis events in the azimuthal distribution of photons. The main components of the absorber are			
100x20x5 mm3 NaI(Tl) scintillator readout by an array of SiPMs at both ends working in co-incidence. We			
characterize an absorber and investigate the variation in energy, position resolution, and light yield with the change			
in the irradiation position along the length of the absorber and the reduction in SiPM noise in co-incidence. In this			
talk, I will present the first results of the position sensitive absorber design and discuss the experimental results in			
the context of improvement in the polarimetric sensitivity of the Compton polarimeter.			

ASI2025_703	Abhishek R	Poster	
	Facilities, Technologies and Data science		
	FRB detection at low freque	ncies	
Detection of Radio transients suc	ch as the FRB is typically carried	d out using offline processing techniques. In	
upcoming instrumentation, such	as the SKA and SPOTLIGHT,	realtime processing using high-performance	
computing accelerators such as G	PU is planned. Such transient sea	rches at lower radio frequencies are still more	
complex due to the more significa	complex due to the more significant DM-related delays. This paper will review the transient detection techniques		
used for the Fast Radio Bursts in the existing Radio telescopes worldwide and describe a novel soft-realtime (Analog			
and Digital) approach for detecting transients being planned at Gauribidanur Observatory using a new infrastructure.			
An FRB out trigger station is already being planned in the same Gauribidanur observatory that operates in a higher			
frequency range between 400 to 800 MHz. We planned to establish a trigger functionality to enable low-frequency			
follow-up capabilities between the 150-350 MHz band. This paper will outline the details of the detection techniques			
in both analog and digital domains using the existing and upcoming infrastructure in Gauribidanur.			

ASI2025_425	Akshay M S	Poster	
	Facilities, Technologies and Dat	a science	
Studying cross	-dispersion options for a near-infra	ared echelle spectrographs	
Near-Infrared Echelle Spectrograp	ohs with high spectral resolution	(R~30000-60000) offers unique insights into	
several astrophysical phenomena	. Several science cases like pro	bing exoplanet atmospheres through transit	
spectrometry , observing YSOs and	d using radial velocity techniques	for M-dwarf companions are some of the few	
science cases among many that	can be uniquely targeted using n	ear-infrared spectrographs. One of the main	
challenges of near-infrared echelle	challenges of near-infrared echelle spectrograph design is finding the right cross dispersion elements to achieve the		
best slit size and fiber multiplexing	best slit size and fiber multiplexing in case of fiber based spectrographs. In this study we use Zemax and study the		
cross -dispersion with several configurations of single-pass prisms, double-pass prisms and Grisms. We use			
primarily infrared materials like ZnS and Fused Silica for these studies. We also explore using grism configurations			
to understand the best and simple model in various echelle configurations. This study will be useful for infrared			
spectrograph designers and is planned for use with our design of a near-infrared echelle spectrograph for HCT or			
DOT.			

ASI2025_588	Akshaya V G	Poster
Facilities, Technologies and Data science		
RFSoC-based digital spectrometer for APSERa		

The Epoch of Recombination is a pivotal period in cosmological history, during which the hot plasma of the early Universe cooled and transitioned into an atomic state. Cosmological Recombination Radiation (CRR) lines that are emitted by the process of the formation of the first atoms over this era appear as additive ripples in the Cosmic Microwave Background spectrum. APSERa, the Array of Precision Spectrometers for the Epoch of Recombination, is an upcoming cosmology experiment aimed at detecting CRR over 2-4 GHz where the sensitivity for a ground-based detection is expected to be the highest. On completion, APSERa will comprise a 128-element array with customdesigned antennas and cutting-edge electronics. The prototype APSERa element employs a Xilinx ZCU111 evaluation board based on Radio Frequency System-On-a-Chip (RFSoC) at the core of its Digital Correlation Spectrometer. This board includes 8 high-speed 12-bit ADCs, each capable of sampling at up to 4.096 GSPS, of which 2 ADCs are used for digitization of bandwidths of about 2 GHz. The correlation spectrometer is realized inside the RFSoC using 16384-point split-FFT architecture (M*N) through a combination of sixteen parallel, pipelined streaming 1024-point FFT IP cores, complex multipliers for phase correction, and a custom-designed 16-point parallel FFT engine. Complex Multiplier and Accumulator performs on-chip integration of the FFT spectra for about 16.77 ms to produce two autocorrelation spectra and one cross-power spectrum. This data is streamed via 1-gigabit ethernet to a laptop. In this talk, the architecture of the digital correlation spectrometer implemented on the RFSoC and the preliminary results from this digital receiver will be presented.

ASI2025_686	Amirul Hasan	Poster	
	Facilities, Technologies and Data science		
Study of High-Efficiency Fore-Op	tics Design for the High-Resolutio	n Optical Spectrograph (HROS) on the Thirty	
	Meter Telescope		
The Thirty Meter Telescope (TMT) is	expected to be one of the most po	owerful ground-based observatories of the next	
decade that is carefully designed to	answer the pressing scientific qu	estions of Astronomy. India plays a crucial role	
in the TMT project, contributing s	significantly to its development a	nd taking the lead in designing the second-	
generation seeing limited High-Res	solution Optical Spectrograph (HR	OS). This spectrograph, proposed based on a	
white-pupil design, incorporates bo	oth slit and fiber-fed options and sp	ans a wavelength range of 310 nm to 1100 nm.	
With observing modes offering re	solutions from 20,000 to 100,00	0, HROS stands out for its ability to capture	
emissions in the ultraviolet range, particularly valuable for studying hot stellar objects. HROS is uniquely designed to			
address a range of key science drivers, including stellar archaeology, inter- and circumgalactic medium (IGM/CGM)			
studies, exoplanet transit spectroscopy. Its ability to observe down to 310nm and the resolution range it offers,			
makes it a unique spectrograph in comparison to similar spectrograph designs, ArmazoNes high Dispersion Echelle			
Spectrograph (ANDES) at the Extremely Large Telescope (ELT) and the GMT-Consortium Large Earth Finder (GCLEF)			
at the Giant Magellan Telescope (GMT). HROS achieves various resolution settings solely through fore-optics			
modifications, eliminating the need for complex reconfigurations. This efficient fore-optics design enables high			
throughput, especially at UV wavelengths critical to HROS's objectives. This paper presents a detailed exploration			
of the current state of high-resolution spectrograph optics and presents an optimized fore-optics design			
configuration for HROS, enhancing its performance for challenging observations in the 310 nm regime.			

ASI2025_207	Arijit Maiti	Poster
Facilities. Technologies and Data science		

On-sky Characterization of ProtoPol: a medium resolution echelle spectro-polarimeter for PRL telescopes ProtoPol is a medium-resolution echelle spectro-polarimeter initially conceived as a prototype instrument for the currently under development M-FOSC-EP (Mt. Abu Faint Object Spectrograph and Camera-Echelle Polarimeter) instrument - a two-channel multimode instrument which is currently being designed for PRL 1.2m and 2.5m telescopes at Mt. Abu. Though ProtoPol was initially conceived to evaluate the development methodology of the spectro-polarimetric arm of M-FOSC-EP with commercially available off-the-shelf components, it was later elevated to the level of a full-fledged back-end instrument for PRL telescopes. ProtoPol was designed on the concept of echelle and cross-disperser gratings to record the cross-dispersed spectra in the wavelength range from 390 to 940 nm with a resolution ($\lambda/\delta\lambda$) in the range of 7000-8000. ProtoPol has been successfully developed and commissioned on PRL 1.2m and 2.5m telescopes since December 2023, and a variety of observations are being carried out for instrument characterization and scientific purposes. Observations of standard unpolarized stars conducted during on-sky characterization revealed an instrumental polarization of 0.1-0.2 %. ProtoPol achieved a spectral resolution of 7000-8000, with a polarimetric accuracy of $\delta P < 0.2\%$ for linear polarization. Preliminary results of the observed polarization profiles of Ha line for Be stars and the observed continuum polarization of red giant stars are also presented. A dedicated fully-automated spectro-polarimetric data reduction pipeline was developed to help in the analysis process of the spectro-polarimetric data. The pipeline takes raw echelle spectropolarimetric data frames as input and gives the variation in polarization as a function of wavelength at output. The pipeline can be used for data-reduction of any such similar echelle spectro-polarimeters and/or echelle spectrometers. In this proposed talk, the speaker shall discuss the design and features, laboratory, and on-sky performance of ProtoPol along with the development of a dedicated echelle spectro-polarimetric data reduction pipeline.

ASI2025_36	Chaitanya Rajarshi	Poster	
	Facilities, Technologies and Dat	a science	
Design, assembly, in	tegration, and laboratory testing o	f the WALOP-South Polarimeter	
The Wide-Area Linear Optical Polar	imeter (WALOP)-South is the first o	optical-wavelength polarimeter with wide-field	
and survey capabilities. Set for cor	nmissioning in early 2025, it will b	e installed on the 1-meter SAAO telescope at	
South Africa's Sutherland Observ	atory to conduct the PASIPHAE	sky survey. The PASIPHAE initiative aims to	
produce the first polarimetric sky r	nap in optical wavelengths, cover	ing over 2,000 square degrees of the southern	
Galactic region. WALOP-South's a	dvanced design allows it to captur	e linear polarization (Stokes parameters q and	
u) in a single exposure, spanning	a 35×35 arcminutes-squared fiel	ld of view (FoV) with SDSS-r broadband and	
narrowband filters in the 500-750	narrowband filters in the 500-750 nm range, and achieving a polarization accuracy of 0.1%. The instrument's		
ambitious objectives demand s	ambitious objectives demand stringent engineering standards, particularly in the optical, polarimetric,		
optomechanical, and electronic subsystems, all of which have been carefully engineered to meet specific			
performance requirements. By September 2024, all optical and mechanical subsystems had been assembled and			
were undergoing testing and integration, with full lab-based testing and characterization expected to conclude by			
November 2024. In this paper, we discuss (a) the design and development of WALOP-South and its key subsystems,			
with a special focus on the opto-mechanical design, which has not been previously detailed, and (b) the lab-based			
assembly, integration, and preliminary results from its characterization process.			

ASI2025_321	Deekshya Roy sarkar	Poster	
	Facilities, Technologies and Dat	a science	
Development of	a Wide-Field Imager for telescope	s at PRL Mt Abu Observatory	
The Wide-Field Imager System (WF	FIS) is an imaging system primarily	for use with the 50cm telescope at PRL Mt Abu	
Observatory in Rajasthan. It has a 3	Observatory in Rajasthan. It has a 33 x 44 arcmin field of view on the 50cm telescope. It is equipped with 50x50mm		
square optical broadband (U, B, V, R, I) and a few narrowband filters with the possibility of using six filters at a time			
on a filter wheel. The camera and filter wheel are controlled using the INDI and Kstars software running on a Linux			
embedded compact mini PC. The system is designed to be a complete imaging solution to provide good photometric			
accuracy and is important for studies of science cases like comets, near earth objects, blazars among others. In this			
poster, we shall describe the instrument specifications, design, and some example observations of a few science			
cases and their results.			

ASI2025_617	Kapil Kumar	Poster	
	Facilities, Technologies and Dat	a science	
Indigenous Innovations for A	chieving Sub m/s Precision in High	Resolution Spectroscopy with PARAS-2	
Achieving the precision required to de	tect Earth- to super-Earth-sized plane	ts via radial velocity (RV) measurements demands	
an accuracy range of 10–30 cm/s, w	hich necessitates exceptional long-te	rm instrument stability in high-resolution Doppler	
spectroscopy. This work introduces	the optical and opto-mechanical de	sign and implementation of a double scrambler	
integrated with octagonal fibers, dev	integrated with octagonal fibers, developed for the PARAS-2 high-resolution spectrograph (R ~100,000) at the Physical		
Research Laboratory (PRL) in Ahmed	abad. The scrambler delivers signific	ant scrambling gains (SGs), ensuring uniform and	
stable slit illumination by minimizing input-induced illumination variations on the fiber output. Consequently, this innovation			
enhances the stability of the spectrograph's instrument profile, leading to improved Doppler precision. Additionally, the system			
is equipped with an Atmospheric Dispersion Corrector (ADC), utilizing counter-rotating prisms in the Cassegrain unit to			
counteract atmospheric dispersion effects. Operating successfully since May 2023, the ADC stabilizes RV accuracy under			
varying atmospheric conditions, advancing the capabilities of PARAS-2 for precise RV measurements in exoplanet detection.			
This development exemplifies India's technological advancements under the "Make in India" initiative, contributing significantly			
to high-precision astronomical instrumentation.			

ASI2025_483	Karthic Kumar	Poster	
	Facilities, Technologies and Data science		
Development of Metrology Statio	on an XYZ gantry for the Sub Apertu	ure Interferometer in Thirty Meter Telescope	
	Project.		
This paper presents the design, d	evelopment, installation, and tes	ting of the Metrology Station—an XYZ gantry	
system developed to support a Sul	o-Aperture Interferometer, which I	performs surface frequency validations for the	
mirror segments of the Thirty Mete	r Telescope (TMT). TMT employs	Stressed Mirror Polishing technology to polish	
its mirror segments, transforming	spherical meniscus glass blanks i	nto precise aspheric forms by applying forces	
around the mirror edges with warping	ng arms and polishing under stress	. Following this shaping process, the segments	
are cut into hexagonal forms, nec	are cut into hexagonal forms, necessitating strict surface accuracy validation through metrology tools. The Sub-		
Aperture Interferometer plays a critical role in measuring mid-spatial frequency ranges from 50 mm to 80 mm,			
essential for these verifications. The India TMT Coordination Centre (ITCC) developed the XYZ gantry to support an			
interferometer weighing approximately 350 kg on a platform with a travel range of 2500 mm along the X-axis and			
2000 mm along the Y-axis. This movement is powered by two synchronized servo motors on the Y-axis and one servo			
motor on each of the X and Z axes. Designed for high precision, the system provides an overall positioning accuracy			
of 50 microns and an incremental accuracy of 10 microns, achieved through optical encoders placed on both the X			
and Y axes. Fully programmable, the gantry includes a camera for aligning polished mirrors with respect to its axes			
and a pen on the Z-axis to make precise markings on the polished mirror required to perform the interferometric			
inspection, ensuring seamless integration and optimal performance for the interferometer inspection.			

ASI2025_204	Kevikumar A. Lad	Poster
Facilities, Technologies and Data science		
Mirror Coating Plant for PRL 2.5m Telescope		

Mirrors are the telescope's most critical components, serving as primary light-gathering elements. To enhance the light-gathering capabilities, mirrors for the ground-based telescopes are coated with a thin film of metallic layer. For our PRL 2.5m Telescope, primary and secondary mirrors are coated with a thin film of bare aluminium, which degrades over time after being exposed to the local environment for a long period of time. To address this issue, a new mirror coating facility has been developed and installed at the PRL Mount Abu Observatory for the 2.5m telescope, marking a significant milestone as the first of its kind in India under the MII (Make in India) initiative. This innovative facility was developed in collaboration with Hind High Vacuum Pvt. Ltd (HHV), Bangalore, employs the resistive-heating-based thermal evaporation technique, allowing for the coating to be carried out in the upwardfacing mirror configuration for a 2.5m diameter mirror. This technological advancement ensures superior uniformity in deposition thickness across the mirror's surface, thereby enhancing performance. Furthermore, a dedicated mirror coating removal and cleaning station has been specifically developed for the 2.5m telescope mirrors. The facility became operational in October 2023. This achievement is a significant contribution towards maintaining the longterm excellence of the telescope mirrors. The first time re-coating of the primary mirror and secondary mirror of the PRL 2.5m Telescope was successfully performed with the plant in 2023. The quality of the thin film of bare aluminum coating on both mirrors indicates the successful operation of the plant. We will present the design and development of a thin-film mirror coating plant for a recently installed PRL 2.5m Telescope.

ASI2025_325	Mahesh Dalavi	Poster	
Facilities, Technologies and Data science			
End Item Data Pa	ackage Management System (EMS	i) for Thirty Meter Telescope.	
As a key partner in the Thirty Meter	Telescope (TMT) Project, the India	TMT Coordination Center (ITCC) is responsible	
for the manufacturing, assembly, te	sting, and shipment of various tele	scope subsystems. These subsystems include	
M1CS Actuators (1526 units), Edge	Sensors (3284 units), Segment Co	ontroller & Cabling (SCC) (9080 units), Segment	
Support Assemblies (SSA) (580 u	nits), and Polished Mirrors (84 u	nits). In addition to production and supply of	
hardware subsystems, ITCC is als	so tasked with delivering compre	hensive documentation for each component,	
collectively termed as the End Iter	n Data Package (EIDP). EIDP con	tains a range of critical documents, including	
Certificates of Conformance (COC	C) for raw materials, special proce	esses, and bought-out items (BOI), as well as	
calibration certificates for all mea	calibration certificates for all measuring instruments used in inspections, part inspection reports (IR), machine-		
generated IR, non-conformance re	eports, assembly logs, etc. All th	nese documents received from vendors, gets	
reviewed by ITCC before submitting it TIOPO. To streamline EIDP management, ITCC has developed the EIDP			
Management System (EMS), an online tool that facilitates the upload, review, and tracking of each EIDP document.			
It automatically verifies IRs against the drawing requirements and flags error. Also the IRs are checked wrt the			
associated COCs and calibration	certificates, indicating any issues	with calibration expirations or incorrect COC	
entries. This helps vendors to ca	entries. This helps vendors to catch dimensional non-conformances, typographical mistakes and issues with		
traceability during submission. EMS also allows ITCC members to review each document with an Accepted/Not			
Accepted response, streamlining the feedback loop. Once all documents are accepted, ITCC can access the			
complete EIDP with a single click. This system has decreased the time required for document review by			
approximately 90% and reduced the error percentage to nearly zero. In this paper I will provide an overview of the			
India-TMT EMS document flow, various login types, module details, tool performance and future scope.			

ASI2025_228	Mani Khurana	Poster	
	Facilities, Technologies and Dat	a science	
DIOS: A	n Image Cleaning Method to impro	ve MACE sensitivity	
Ground-based atmospheric Chere	nkov telescopes play a crucial ro	le in detecting very high energy (VHE) gamma	
rays, providing key insights into nor	n-thermal energetic phenomena ar	nd the acceleration processes occurring under	
extreme astrophysical conditions.	Detection of VHE \$\gamma\$ ray	photons is inherently challenging due to the	
presence of huge cosmic ray backg	ground. Cosmic ray background eve	ents can mimic gamma-ray signatures, making	
it difficult to distinguish true VHE g	amma-ray signals. Therefore, it is	critical to implement a robust image cleaning	
that can effectively remove the c	osmic ray background. Here, we	present a new image cleaning method DIOS	
(Denoising Image of Shower) for	the Major Cherenkov Atmosphe	ric Experiment(MACE), which enhances the	
cleaning of the event data, improves the signal-to-noise ratio and allows for more precise measurements of the			
gamma rays properties. Proper ima	gamma rays properties. Proper image cleaning not only enhance the detection of faint gamma-ray signals but also		
ensures that the reconstructed images are reliable, leading to a more accurate understanding of the underlying			
astrophysical phenomena. This advancement due to DIOS method compared to the standard cleaning method			
directly leads to an increase in the sensitivity of the MACE telescope. The workings of the DIOS method and its			
importance will be discussed in detail.			

ASI2025_630	Nikitha Jithendran	Poster	
	Facilities, Technologies and Data science		
Speckle Int	terferometry with speckle imager o	on PRL 2.5m telescope	
Speckle imaging is a powerful tech	nique to achieve near-diffraction-l	imited imaging with ground-based telescopes,	
overcoming the atmospheric disto	rtions that degrade image quality	due to air turbulence. By capturing very short	
exposures (2-10 ms) when the atm	osphere is relatively stable, we ca	n reduce the effects of turbulence and, through	
cumulative co-adding, achieve hig	sh-resolution images close to the	diffraction limit of the telescope. Integrating	
speckle imaging with radial velocit	ty (RV) measurements further enh	ances the study of exoplanet candidates and	
stellar systems by disentangling	signals from planets and stel	lar companions, leading to more accurate	
characterizations of these systems	. We have designed and developed	a speckle imager specifically for the PRL 2.5m	
telescope at the Mount Abu Obse	telescope at the Mount Abu Observatory, Gurushikhar, Rajasthan. Installed on side port-1 of the telescope, this		
speckle imager provides a field of	speckle imager provides a field of view (FOV) of 1.5' x 2.0' and supports exposure times of 2-50 ms in the fixed V-		
band. It can resolve stars as close a	as 0.3-0.4 arcseconds. A custom F	Python-based data reduction pipeline has been	
developed for analyzing speckle interferometric data. This instrument has already been used for speckle			
interferometric studies of exoplanet host stars, including TOI-6651b, the first exoplanet discovered using PARAS-2			
on the PRL 2.5m telescope, and other discoveries that are already in the pipeline. It has also been successfully			
applied in resolving close binary systems. In this presentation, I will provide an overview of the speckle imager,			
describe the data reduction and analysis pipeline, and discuss our initial results.			

ASI2025_125	Nitish Singh	Poster
Facilities, Technologies and Data science		
Design, Fabrication, and	Performance Analysis of a Wide-F	ield Camera for the VBT Prime Focus
Over the past few decades, newer a	and more efficient telescopes have	been built worldwide at sites with good seeing
conditions. When discussing olde	er-generation telescopes, it beco	mes imperative to focus on enhancing their
efficiency and integrating new tech	nologies to keep them competitive	e and relevant in modern astronomy. The Vainu
Bappu Observatory is home to 0.5	to 2-m class telescopes, including	g the Vainu Bappu Telescope (VBT). The VBT is
a 2.34m reflecting telescope that c	omprises parabolic primary and hy	yperbolic secondary mirror systems. To enable
wide-field imaging and multi-objec	t spectroscopy, telescopes requir	e a large FoV and a substantial light-collecting
area that ensures high image qualit	ty across the entire field. To achiev	ve this, a system of optical elements known as
the Wide-Field Camera (WFC) is e	ssential. The Indian Institute of As	strophysics (IIA) has designed, developed, and
fabricated a compact, lightweight,	three-element WFC using spherica	al lenses for the 2.34-meter VBT prime focus in
its laboratory. This WFC enables a	a wider FoV of 0.5 degrees, with a	an optional Atmospheric Dispersion Corrector
(ADC) that reduces aberrations across the wide field without requiring additional optical elements. The WFC has		
already been fabricated, and its mount has been constructed in the IIA laboratory. We conducted laboratory tests of		
the WFC, including wavefront error measurements using a ZYGO interferometer and spot size analysis with a		
combination of lenses and a CMOS detector, which demonstrate that the WFC delivers sharp images over a 0.5-		
degree FoV. We are now preparing to install the WFC at the VBT's prime focus and will present preliminary		
photometric results following its installation. In this conference, I will present the design, fabrication, and testing		
results of the WFC.		

ASI2025_341	Prasanna Deshmukh	Poster
Facilities, Technologies and Data science		
Integrated Modelling of 6.2m Wide-Field Telescope for Spectroscopic Survey.		
The upcoming large astronomical telescopes are trending towards the Segmented Primary Mirror due to		
technological advancements & manufacturing feasibility. We have designed a wide-field optical IR spectroscopic		

survey telescope that can deliver spectra of several millions of astronomical sources. The baseline design of this telescope is a 6.2 m segmented primary mirror with 19 hexagonal segments of 1.44m size, 84 edge sensors, and 57 soft actuators. The telescope is designed to provide a 2.5deg FOV achieved through a system of wide field corrector lenses with a design residual <0.2". Also, it delivers an f/3.6 beam suitable for directly feeding optical fibres. A mechanical concept of the telescope is designed with a truss-based mirror cell to support the segmented primary mirror and keep the deformation to a minimum. As the primary mirror is segmented, the deformation due to different disturbances like wind, vibration, thermal effects must be corrected to a nanometer accuracy to make it act like a monolithic primary mirror. This is achieved through an active control system using three actuators and six intersegment edge sensors. In addition to these disturbances atmospheric seeing also degrades the image quality which can be corrected by using Adaptive Optics. An integrated model using codeSMT telescope simulation tool, is built. It is based on the state-space model of a soft actuator with Multiple-Input Multiple-Output (MIMO) capability to incorporate dynamic wind disturbance from the IAO Hanle site, thermal and vibration effects. A detailed error multiplier analysis is performed numerically using this tool and is in good agreement with analytical calculations. A parameter sensitivity analysis is performed to fine-tune the primary mirror control system variables. This paper presents the integrated modeling based performance analysis of a 6.2m wide-field telescope currently under conceptual design.

ASI2025_708	Sahana Bhattramakki	Poster	
	Facilities, Technologies and Dat	a science	
	FFT beamforming implimentation on RFSOC		
As part of SKA-Low development, we are increasing the number of simultaneous beams formed by the SKA Tile			
processing module to 48, which will help create the sensitive beams for FRB search, pulsar search and pulsar timing			
with the SKA-Low Telescope. The SKA-Low arrangement will have 1,31,072 LPDA-based antenna elements to be			
deployed in Australia. As the tile beamforming cannot be easily verified in a local site, such as the Gauribidanur			

observatory, without having such a large number of antennas in place, we are investigating alternative schemes, including an FFT-based beamforming option that will work well for smaller-scale aperture arrays that may be deployed elsewhere, such as the upcoming LPDA arrays in the Gauribidanur observatory. If the antennas can be evenly spaced, the FFT-based beamforming offers a more efficient way to create multiple uniformly spaced search beams in the sky. These are especially helpful for transient searches, like the upcoming investigation into Fast Radio Bursts (FRBs) at the observatory. This new beamforming is planned to be implemented in a new RFSoC FPGA platform. The paper will present the salient features of this work, highlighting the results obtained and describing the

161

future expansion plans.

ASI2025_271	Shubhangi Jain	Poster	
Facilities, Technologies and Data science			
The FUV Imaging Satellite (FISAT)			

The FUV Imaging Satellite (FISAT) is a compact Far UV telescope designed for daily transient monitoring. It features an 80 mm Ritchey–Chrétien (RC) design, operating in the 130–180 nm range with a 3° field of view. FISAT has a peak effective area of 2.5 cm² and can detect objects as faint as 18 AB (1200 s, SNR = 5). Its spatial resolution is ~6 arcseconds at the field center, combining resolution and compact design to meet the 3.4U size and mass constraints. The 6-12 month survey will focus on capturing novae outbursts and other transient events. Novae, explosive events in cataclysmic binaries caused by thermonuclear runaway reactions on white dwarfs, provide valuable insights into accretion processes, particle acceleration, binary evolution, and galactic chemical evolution. The Andromeda Galaxy (M31), with its high nova rate, is an ideal target for nova studies. Monitoring M31 daily in the far-ultraviolet (FUV) will produce unprecedented light curves, providing key data on nova speed class, peak brightness, and UV flashes. Current UV surveys are limited in depth and cadence, but FISAT's capabilities, alongside optical observations, will enable the detection of new novae and continuous monitoring of known novae. Daily exposures can detect FUV sources up to 18 magnitudes, increasing the chances of observing short-lived UV flashes, which are rarely captured.FUV surveys can also refine estimates of nova rates and populations, and offer insights into supernova type la progenitors. Beyond novae, FISAT may detect other transients like core-collapse supernovae, thermonuclear supernovae, and fast blue optical transients (FBOTs). Additionally, the survey will include a Galactic plane survey, broadening its observational scope beyond M31.

ASI2025 432	Somnath Dutta	Poster	
71012020_402	Sonnaar Batta	1 00001	
	Facilities, Technologies and Dat	a science	
Localization of fast radio bursts: An outrigger station of BURSTT-Taiwan at RRI-India			
Fast radio bursts (FRBs) are brief radio pulses lasting only milliseconds and originating from distant galaxies. They			
present some of the most intriguing mysteries in astronomy due to the challenges involved in detecting and localizing			

present some of the most intriguing mysteries in astronomy due to the challenges involved in detecting and localizing their sources. To date, astronomers have only managed to localize a few dozen FRBs. The Bustling Universe Radio Survey Telescope in Taiwan (BURSTT) is an innovative radio array specifically designed to tackle this issue by both detecting and accurately localizing FRBs. BURSTT's unique capability for near-all-sky monitoring (covering 10,000 square degrees) combined with sub-arcsecond localization (less than 1 arcsecond) distinguishes it from existing FRB telescopes, allowing it to localize hundreds of FRBs each year. To enhance localization accuracy, BURSTT is expanding its network by establishing international outrigger stations. One crucial station is located at the Raman Research Institute in Gauribidanur, Bangalore, India. The distance between the main BURSTT station in Taiwan and Gauribidanur is approximately 5,000 kilometers, enabling us to achieve a high level of accuracy (around 0.1 sub-arcseconds) in localizing FRBs. This precision will not only help identify the host galaxies of FRBs but also pinpoint their exact locations within those galaxies, representing a significant advancement in understanding their origins and the environments surrounding them. In Phase I of the project, we plan to install 16 antennas along with one RFSoC in 2024, which will be expanded to 64 elements by 2025. Additionally, we are conducting very long baseline interferometry (VLBI) tests between BURSTT-RRI and BURSTT-Taiwan.

ASI2025_34	Sonika Piridi	Poster	
	Facilities, Technologies and Dat	a science	
The First Da	ata Release of Ultra Violet Imaging	Telescope (UVIT DR1)	
The Ultraviolet Imaging Telescope (UVIT) onboard AstroSat observes	pointed observations simultaneously in far-UV	
(FUV) and near-UV (NUV). It has	observed around ~1800 observat	tions, including stellar clusters, galaxies, and	
nebulae. We present UVIT DR1, the	e first release of the comprehensiv	e catalog for the observations taken during the	
first two years of its launch. UVIT	DR1 encompasses an area of ~	58 square degrees in 291 fields. We use the	
CCDLAB pipeline to reduce the L1	data and source-extractor for sou	rce detection. UVIT DR1 provides photometric	
magnitudes measured using different	ent procedures such as aperture (for three different apertures), Kron, Isophotal,	
and point-spread function technic	ques. We verify our catalog by c	ross-matching with GALEX and Gaia source	
catalogs. The FUV depth in the mag	catalogs. The FUV depth in the magnitude where most of the sources are detected is found to be 22.75, 22.25, 21.75,		
and 20.75 mag for CaF2, BaF2, Sapphire, and Silica, respectively, while for NUV, this ranges from 23.75, 20.75,			
22.25, 21.25, and 20.25 mag for Silica15, NUVB15, NUVB13, NUVB4, and NUVN2 filters, respectively. There are			
239,520 unique sources in the combined UVIT DR1, of which 70,488 sources have FUV magnitudes and 211,410			
have NUV magnitudes. UVIT DR1 would further help in various multi-wavelength analyses of UV sources.			

ASI2025_625	Tsewang Stanzin	Poster	
	Facilities, Technologies and Dat	a science	
Development of a Customized Aut	tomatic Weather Station as an Aux	iliary Instrument of the DIMM Seeing Monitor.	
To characterize sites in and around	d Hanle a DIMM seeing monitor ha	s been installed. To make this seeing monitor	
completely robotic, few critical env	vironmental parameters such as c	loud coverage, rain drop, sky brightness, wind	
speed, wind direction, temperature	re and relative humidity (RH) are	required. Commercially available Automatic	
Weather Station (AWS) does not pr	ovide two most important parame	ters which DIMM system requires and they are	
cloud coverage and the sky-brightr	ness. By making use of a precisior	sensors of different types, we have designed	
and developed a customized AWS a	at Indian Astronomical Observatory	(IAO) Hanle, Ladakh. The sensors output have	
gone through rigorous calibration p	gone through rigorous calibration process and its data quality has also been cross checked. Our customized AWS		
provide all required environmental	provide all required environmental parameters to the DIMM system on the real time. Then the DIMM software uses		
these info to assess the weather condition and on event of cloudy sky, high winds, excessive humidity, and/or			
precipitation, the system automatically suspends DIMM operations to safeguard sensitive equipment. Once			
conditions improve, including clear skies and low wind speeds, the AWS autonomously resumes DIMM activities,			
ensuring minimal downtime and enhancing data collection efficiency without requiring manual intervention. In this			
paper, we present the technical details of our AWS as well as well some sample data collected using the same.			

ASI2025_733	Vishwajeet Swain	Poster	
Facilities, Technologies and Data science			
Rapid follow-up of gra	avitational wave events with a robo	tic meter-class optical telescope	
The GROWTH-India Telescope (G	IT) is India's first fully robotic tel	escope, set up as a part of the international	
GROWTH network. The primary g	oal of GIT is rapid-response time	e-domain observations of gamma-ray bursts,	
novae, supernovae, fast optical tra	ansients, near earth objects, and,	particularly, follow-up of EMGW sources. Our	
location allows us to fill a longitud	de gap between major observator	ies, providing critical continuous coverage for	
rapidly varying sources. To ensur	e rapid response, GIT monitors k	afka-based prompt GW alerts from General	
Coordinates Network (GCN) and a	utomatically triggers neutron star r	nergers based on specific pre-defined criteria.	
Based on the localisation area,	GIT may undertake observations	in one of three modes: (a) tiling the entire	
localisation, (b) galaxy catalogue w	eighted observations (c) follow up	of candidates reported by other telescopes. A	
custom dashboard allows us to me	onitor telescope operations. All da	ta are automatically reduced, including image	
subtraction and photometry. A ma	chine-learning pipeline trained on (our data identifies transient candidates served	
on an interface for human vetting	. The entire software for telescop	be operations, data processing, and transient	
identification was developed in-house by a team of students. The system worked well in the O4a observing run of			
the International Gravitational Wave Network and has since been enhanced based on lessons we learned. I will			
present our workflows, lessons learnt, and key results from our follow-up efforts.			
ASI2025_102 Vrishali Murudkar Poster			
Facilities, Technologies and Data science			
Simulation & optical design optimization studies for a proposed dual mirror Schwarzschild Couder Cherenkov			

Simulation & optical design optimization studies for a proposed dual mirror Schwarzschild Couder Cherenkov Telescope at Hanle.

Ground-based Imaging Atmospheric Cherenkov Telescopes (IACT) utilizing a single light collector dish are employed for the study of gamma-ray sources. These telescopes detect Cherenkov light produced by extensive air showers, initiated by gamma & cosmic rays. However, their performance can be compromised by optical aberrations. Recent study has shown that using an aspheric dual-mirror system, such as the Schwarzschild-Couder Telescope (SCT), can significantly mitigate these aberrations. In addition to reducing optical distortions, the design ensures improved angular resolution and field of view (FoV) of the telescope. Using an in-house-developed code, we conducted ray tracing simulation studies on a ~4m SCT system to optimize the dimensions of the primary and secondary mirrors, as well as the positioning of the camera and the distance between the secondary mirror and the camera. As aspheric mirrors are employed in SCT design, these are essentially characterized by a sagitta (sag) function, a measure of the surface shape with respect to a plane. Optimizing the sag function coefficients of the aspheric primary and secondary mirrors, has led to a spot size of <5mm at the camera plane, which is comparable to the spot size of similar telescope operated by other groups. Given the challenges associated with fabricating a single ~4m aspheric mirror, we explored a tessellated primary mirror design composed of 12 segments. Here the segment consists of 22 mirrors, each with a diameter of ~230mm, resulting in 264 aspheric facets. We will present the results pertaining to spot size before and after the optimization of the sag coefficients and the tessellated mirror design during the meeting. Additionally, we will also compare the performance of the dual mirror SCT with single mirror IACTs of same size operational elsewhere.

Posters in Education, Outreach and Heritage

ASI2025_455	Antony Arupara	Poster	
	Education, Outreach and Heritage		
Table Top Tea	ching Aid for Exoplanet Detection	using Transit Photometry	
Exoplanet detection has advanced	significantly through various obse	rvational techniques, including radial velocity,	
direct imaging, and gravitational n	nicrolensing. Among these, the tr	ansit method—which detects exoplanets by	
observing the temporary dimming	of a star as a planet transits acr	oss its face—has been particularly effective,	
accounting for many exoplanet dis	coveries. In this work, we introdu	ce a tabletop model designed to simulate the	
transit detection process, offering a	an engaging educational tool for te	aching this technique. The model consists of a	
rotating "planet" that periodically orbits a fixed "star," with variations in light intensity demonstrating the transit			
effect. Users can adjust orbital parameters and planet size, allowing hands -on exploration of how different planetary			
characteristics produce distinctive transit signatures. The setup is controlled wirelessly via a web interface hosted			
on an ESP32 microcontroller, providing a simple, accessible user experience. To support replication and foster			
educational outreach, we provide all necessary resources, including 3D-printable CAD files and source codes,			
enabling educators and enthusiasts to build and operate the model. By making complex astrophysical concepts			
accessible and interactive, this model is a practical introduction to exoplanetary science, enhancing theoretical			
understanding through a hands-on, experiential approach.			

ASI2025_502	Ashmita Tribedi	Poster
	Education, Outreach and He	ritage
Impact of Observatory Visit prog	rams in spreading astronomy awa	reness among young students: a case study
In the past few years, astronomic	al observatory visit programs hav	e been initiated by some amateur astronomy
organizations in India as an initiat	ive to spread awareness about a	stronomy among young students and general
public. This is done mostly throug	the efforts of some amateur o	rganization's passionate members along with
collaborative hands from the respe	ective research institutions of ast	ronomy and astrophysics, such as IIA, IUCAA,
ARIES, NCRA, etc. Jyotirvidya Pari	sanstha (JVP), the oldest amateu	r astronomy organization in India has recently
started a nationwide program to facilitate educational visits at different major astronomical observatories to		
promote astronomy education among larger mass. This is a case study which highlights the impact of such		
observatory visit programs among Indian young students as observed from JVP's initiatives. The initial results from a		
survey among students who participated in these programs for the past 3 years are presented. These results further		
highlight the importance of organizing such fruitful educational trips more often by other organizations too.		

ASI2025_304	Gobinda Das	Poster	
	Education, Outreach and Heritage		
SOLAR OBS	SERVATIONS AS EDUCATIONAL T	OOLS FOR STUDENTS	
A great majority of the students co	mmunity don't get even a little kno	owledge on astronomy or astrophysics in their	
school and college education. It is a	lso noteworthy that , the interest o	f the students in basic sciences is on the wane.	
It is not a good sign. The pursuit of s	science is essential for the progre	ss and development of a nation. A teacher has	
to take role in this crisis. If a teach	er stimulates interest in a subject	the students likely develop an interest in that	
subject. Solar observations may be	very handy tools to expose the stu	dents to the joy of research . Thus the students	
will be able to appreciate the physi	cs of the sun and extend it to the s	tars in general. Our present work is devoted to	
the following studies. To find the ro	the following studies. To find the rotation period of the sun, the daily images of the sun from SOHO are downloaded.		
Limb-darkening can be measured b	y observing the intensity of light ac	cross the sun's diameter during a solar eclipse.	
Identification of elements in solar spectrum, available online. Finding the ratio of the distance of the sun from the			
Earth when maximum (Aphelion) to the distance when minimum (Perihelion), eccentricity of the Earth's orbit is			
measured. A variety of experiments on the sun are possible during a Venus transit. Solar observations provide			
excellent opportunities for understanding the physics of the sun and stars in general among the students. This can			
make the students interested in basic sciences also. Keywords: sunspots observationsrotation period			
limb darkeningsolar spectrumeccentricity			

ASI2025_736	Indulekha Kavila	Poster	
	Education, Outreach and Heritage		
22 Srutis: Indian Scientif	ic Music and Extended Chords for	the Sonification of Astronomical Data	
The ancient Indian theory of ragas	(melodic structures) are built on w	what are called srutis, with 2/3/4 sruti tones and	
twenty-two srutis to the octave. Kn	owledge was both written down as	s well as orally transmitted in the tradition, since,	
presumably, written material does	not survive for long in the hot, tropic	cal climate; for the convenience of memorization	
information encoding was extensive	vely used, necessitating explanatic	ons for deciphering and getting an understanding	
of the information content, which w	was transmitted in an unbroken ch	nain called the guru-ziSya-paramparA. However,	
under invasions and/or infusions e	xtending over a millennium, the ch	nain was broken and, first North India and, in the	
period 1300-1400 CE, South India	a lost the link between practice a	nd theory. gltagovindam (12th c. CE) is the last	
composition sung in the same fash	nion all over India. Over the last fev	w centuries, several scholars have attempted to	
decipher the 22 sruti theory of melo	ody. The notion of consonance is o	ne of the guiding principles that has been applied	
for the purpose. Consonance is also the principle behind considering harmony as an essential component for enriching			
melody, as developed over two-and-a-half centuries in Western Europe starting from the Renaissance. Here, we			
examine information on the 22 srutis, that is available in the texts and present a systematic method for generating			
extended chords suitable for the sonification of astronomical data.			

ASI2025_59	Shubha BS	Poster	
Education, Outreach and Heritage			
History of Astronomical manuscripts from ORI Mysore			
The study of manuscripts talks about the development of astronomy from ancient days till today. The details hidden			
in these manuscripts refer to the golden period of astronomical progress in India. Some of the manuscripts under study			
are Laghu-Manasa-vyākhyā, Vasishta-siddhānta, Graha-ganita-Bhāskara, bhūgola nirnayaha, nakṣatra ghaṭikā and			
many more. We have studied a few of these in detail and some are being studied. Palm leaf manuscripts are			
approximately 400year old; while the paper manuscripts are 200year old. The reading, translating and analysis appear			
to be a challenge. Here we summarize the highlights of some manuscripts which are analyzed partly or completely.			

ASI2025_524	Triptesh Acharjee	Poster		
Education, Outreach and Heritage				
Accelerating Astronomy: Simplified Data Access for Faster Discoveries				
Across various conferences, discussions often centre around the availability of new international astronomy				
databases and strategies for accessing them. However, many researchers report ongoing difficulties in navigating and				
utilizing these resources effectively. This lack of accessibility can limit research potential, especially for those newer				
to the field. To address this, a user-friendly app-based platform is proposed to simplify astronomical data access for				
researchers at all levels. This tool would streamline data retrieval, visualization, and analysis, eliminating technical				
barriers and enhancing productivity. With an intuitive interface, researchers could bypass complex systems, access				
critical datasets more readily, and concentrate on discoveries rather than logistical hurdles. With this platform,				
research speed and discovery rates could increase tenfold, allowing astronomers to explore the cosmos as				
conveniently as observing from their backyard. This app could foster a more inclusive and accessible research				
environment, attracting a diverse community to astronomy. In turn, it would support greater collaboration, faster				
discoveries, and a more vibrant exchange of ideas across the field. In essence, this tool has the potential to transform				
astronomy, making research faster, more efficient, and accessible to a global community eager to push the boundaries				
of space exploration.				

Copyright: The Astronomical Society of India

