Fundamental Theories of Physics

Volume 209

Series Editors

Henk van Beijeren, Utrecht, The Netherlands

Philippe Blanchard, Bielefeld, Germany

Bob Coecke, Oxford, UK

Dennis Dieks, Utrecht, The Netherlands

Bianca Dittrich, Waterloo, ON, Canada

Ruth Durrer, Geneva, Switzerland

Roman Frigg, London, UK

Christopher Fuchs, Boston, MA, USA

Domenico J. W. Giulini, Hanover, Germany

Gregg Jaeger, Boston, MA, USA

Claus Kiefer, Cologne, Germany

Nicolaas P. Landsman, Nijmegen, The Netherlands

Christian Maes, Leuven, Belgium

Mio Murao, Tokyo, Japan

Hermann Nicolai, Potsdam, Germany

Vesselin Petkov, Montreal, QC, Canada

Laura Ruetsche, Ann Arbor, MI, USA

Mairi Sakellariadou, London, UK

Alwyn van der Merwe, Greenwood Village, CO, USA

Rainer Verch, Leipzig, Germany

Reinhard F. Werner, Hanover, Germany

Christian Wüthrich, Geneva, Switzerland

Lai-Sang Young, New York City, NY, USA

The international monograph series "Fundamental Theories of Physics" aims to stretch the boundaries of mainstream physics by clarifying and developing the theoretical and conceptual framework of physics and by applying it to a wide range of interdisciplinary scientific fields. Original contributions in well-established fields such as Quantum Physics, Relativity Theory, Cosmology, Quantum Field Theory, Statistical Mechanics and Nonlinear Dynamics are welcome. The series also provides a forum for non-conventional approaches to these fields. Publications should present new and promising ideas, with prospects for their further development, and carefully show how they connect to conventional views of the topic. Although the aim of this series is to go beyond established mainstream physics, a high profile and open-minded Editorial Board will evaluate all contributions carefully to ensure a high scientific standard.

C. S. Unnikrishnan

New Relativity in the Gravitational Universe

The Theory of Cosmic Relativity and Its Experimental Evidence

C. S. Unnikrishnan (1)
Tata Institute of Fundamental
Research (TIFR)
Mumbai, India

ISSN 0168-1222 ISSN 2365-6425 (electronic) Fundamental Theories of Physics ISBN 978-3-031-08934-3 ISBN 978-3-031-08935-0 (eBook) https://doi.org/10.1007/978-3-031-08935-0

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The fundamental theories of physics were all conceived and completed well before we acquired any significant knowledge about the extent and contents of our Universe. By 1930, we had a seemingly mature structure of theoretical physics, with the Special Theory of Relativity, the General Theory Relativity, Quantum Mechanics, and the Quantum Field Theory, as well as the complete descriptions of the interactions of electromagnetism (Maxwell electrodynamics) and gravity (Einstein's General Relativity). But, the realization about the matter content and the vast size of the Universe dawned only after 1930, when observational cosmology expanded its horizons with the aid of large telescope installations. Prior to that, the physical space was considered as largely empty. As a consequence, our fundamental theories were structured assuming explicitly that the space in which physical phenomena occur was essentially empty, devoid of matter and its gravity. In particular, the theories of dynamics and relativity, which are the basis of all of physics, have the empty space as their arena. However, factually, all physical theories are written down and tested in this 'once-given' Universe, in the unavoidable gravitational presence of its vast amount of matter. The current theories are operative in this matter-filled Universe, but their theoretical structure does not include its enormous gravity and physical consequences. The fundamental thesis developed and proved in this monograph, Cosmic Relativity, shows that it is indeed the gravity of the matter-energy in the Universe that determines all of dynamics and relativistic effects. The empirical proof and overwhelming support of the gravitational paradigm are evident in several crucial experiments, spanning several fields.

Matter and energy constitute the charge of gravity; *our Universe is gravitation- ally charged* and it affects the motion of every other gravitational charge—any form of matter with mass or energy. From this natural and simple premise, I develop all features of dynamics and relativity as the gravitational consequences of the factual matter distribution in the Universe, without further postulates or assumptions. The fundamental results that follow include the Principle of Relativity, the laws of dynamics (Newton's law of motion), the Equivalence Principle and the Universality of Free Fall, the solution to the enigma of inertia, the origin of inertial forces, the relativistic modification of spatial and temporal intervals, etc. The whole structure

viii Preface

of fundamental physics is held together by the gravity of the matter-filled Universe, and it has no physical support in an empty Universe. The *matter-filled Universe* constitutes an absolute reference frame for motion and it also provides a universal time, physically represented, for example, in the slowly changing temperature of the cosmic microwave background radiation. The maximal velocity of motion as well as the propagation of light are determined by cosmic gravity, in the absolute frame of the Universe.

Cosmic Relativity is a grand generalization of the Machian idea on the relation between space and matter. If there is one large gap in fundamental physics today, it is our continuing ignorance about the origin of inertia and Newtonian pseudo-forces, or forces without sources. Einstein's General Theory of Relativity inherited the enigma, but converted it to its founding postulate. The theory of Cosmic Relativity solves this problem decisively, synthesizing Galileo, Newton, Einstein, and Mach into one coherent gravitational framework. With a necessary and significant modification of Einstein's equation of general relativity to a 'centenary equation', I have achieved a consistent completion of Einstein's theory of gravity. Cosmic Relativity brings back logical integrity and consistency into the theory of relativity and provides a complete picture of the relativistic physical world, adequately satisfying to both physicists and philosophers of physics. One will see in detail how completely, and naturally, the new paradigm solves and clarifies several fundamental issues that have been debated and researched for centuries.

As one progresses through the book, getting familiar with the concepts and quantitative estimates, one will find a thrilling turn to applications in satellite-based navigation, global time transfer, propagation of light, general dynamics, tropical cyclones, spectroscopy, electron transport in helical molecules, Pauli exclusion and the spin-statistics connection, and even a comprehensive and successful *unified theory of the integer and fractional quantum Hall effects*, all tied together through the universal nature of cosmic gravity.

The crucial predictions of Cosmic Relativity on the behaviour of precision clocks in motion, on the propagation of light, on the unipolar induction in electrodynamics, etc. are all unambiguously confirmed in experiments and empirical data. These predictions are closely linked to the role of the matter-filled gravitational Universe with its absolute cosmological time as the factual absolute reference frame for motion. The prediction that the relative velocity of light is Galilean, relative to inertial observers, and not an invariant constant, was verified in an experiment that devised a novel method for the measurement of the *genuine one-way relative speed of light*. Surprising as this may seem to most physicists, it is a fact that the one-way relative speed of light has never been experimentally scrutinized. All known experiments either compare the two-way speed of light, in which the first-order effects cancel out, or depend on spatially separated clocks to monitor the propagation, in which case there are *unverifiable* theoretical assumptions that introduce logical circularity. In any case, several crucial experiments spanning two centuries are discussed and analysed rigorously in this book to affirm the empirical basis of Cosmic Relativity.

A central result that anchors Cosmic Relativity on a strong empirical foundation is the Galilean nature of the genuine one-way propagation of light. The results

Preface

from my experiments and the transparent evidence from Global Navigational Satellite Systems like the GPS establish the Galilean nature of light. Considering the singular importance of this experimentally proven fact about the true nature of light, respecting the existence of the gravitational absolute frame of the Universe, I have taken pedagogic care to explain and illustrate the refutation of Einstein's hypothesis of the invariant relative velocity of light.

The cosmic gravitational paradigm of relativity and dynamics is both universal and encompassing, covering a wide basis, without the distinction between classical physics and quantum physics. Several fundamental results in spin physics amply illustrate this unity. The gravitational basis determines also the absolute notions of simultaneity, causality, and locality. Within the robust framework of Cosmic Relativity, there is no place for irrational nonlocal physical influences. This is shown in the clearest manner in a discussion on some deep aspects of quantum physics.

Historical accuracy is an important factor when we deal with the development of physics over an extended duration. I have paid particular attention to depend on primary resources in those situations where significant incidents of importance to physics are discussed.

The writing of this monograph to explain this discovery and its far-reaching consequences, finally putting together cosmology and physics in a credible consistent interconnected paradigm, was not a difficult task, because of the driving charm of the theory and the rock-solid empirical support it derived from experimental results spanning more than two centuries. However, it still required the kind support from several friends, some believing and some dismissive. In return, what I intend to present is akin to a well-harmonized symphony, with an ever-lasting significance and encompassing reach.

The necessity for a paradigm change, evident and explicit in this book, is analogous to the need for a change from a geocentric astronomy to a heliocentric astronomy, and as important, both in terms of the call to recognize the physical truth based on observational data and in terms of a conceptual leap. It is understandable that it might take some time before this cosmic gravitational paradigm for relativity and dynamics is universally accepted, but an exceptionally robust and consistent basis built on a wealth of experimental data is the unwavering strength of Cosmic Relativity.

Mumbai, India/Paris, France/St. Agrève, France March 2022 C. S. Unnikrishnan

Acknowledgements

The contents of this book permeate a major portion of fundamental physics. Though the entire paradigm is based on the simple realization that our vast Universe contains an enormous amount of matter and that the cosmic matter has gravity, systematically developing the detailed theory and garnering the strong empirical support required several years of sustained work.

I have talked to a large number of physicists and philosophers of science about these topics. Here, I want to remember 'Rad', Prof. V. Radhakrishnan, the enthusiastic seeker of an ever more understandable insight into the physical world.

There are a small number of my friends in the world of arts and cinema, who were fascinated by the depths of the Universe. Conversations with Prakash Moorthy and Joshy Joseph about cosmos and physics may even transform to fables.

Two streams of quiet influence from my parents were decisive, the commitment to logical integrity that was stressed by my father C. K. Sivarama Pillai and the reliance on the rational and empirical from my mother G. Kalyanikutty Amma.

My sister Karthika and my brother Hari have been unconditionally supportive, enabling my liberal choice of enquiry.

The preparation and the completion of this book owe a lot to the care and enthusiasm of my companion Martine Armand. She partook in the composition of this book, as well as of the earlier one (Gravity's Time), with unwavering keenness and hope. Relishing the angel's share of physics, she helped in maintaining a sober tone in the presentation and language.

Angela Lahee of Springer Nature has been a symbol of editorial positivity, always encouraging and generously supportive.

I thank Ravi Vengadachalam for his excellent coordination, and Kamalambal Palani for her help during the preparation of the proofs and production.

C. S. Unnikrishnan

Contents

Pa	rt I Fi	irst Principles and Their Empirical Core	
1	The P	Paradigm of Cosmic Relativity and Its Evidence	3
	1.1	The First Principles	2
	1.2	What is the Theory of Cosmic Relativity?	6
	1.3	Why is Cosmic Relativity Necessary?	8
	1.4	The Gravity of Our Universe	10
	1.5	The Cosmic Gravitational Metric and the Potentials	12
	1.6	A Phenomenological Assertion	16
	1.7	Summary of the Primary Results of Cosmic Relativity	17
	1.8	The Universal Clock of Cosmic Relativity	25
	1.9	Cosmic Relativity and Its Experimental Tests	25
	1.10	Cosmic Relativity and General Relativity	26
	1.11	Summary	28
	Refere	ences	28
2	Space	e and Time of Our Fundamental Theories	31
	2.1	Newton's Space and Time	32
	2.2	Ernst Mach's Critique and Insight	35
	2.3	Space and Time in 19th Century Physics	38
	2.4	Space and Time in Einstein's Relativity	42
	2.5	Speculative Space and Time	48
	2.6	Space and Time in the Factual Universe	50
	2.7	Philosopher's Space and Time	51
	2.8	Space, Time, and the Principle of Relativity	52
	2.9	Summary	54
	Refere	ences	55
3	Electi	rodynamics, Light and Relativity	57
	3.1	Experiments to Determine the Speed of Light	59
		3.1.1 Roemer's Method	59
		3.1.2 Michelson's Measurements	61

xiv Contents

	3.2	The Ether: The Medium for the Propagation of the EM Waves	62
	3.3	Stellar Aberration	63
	3.4	The Speed of Light in Moving Media—Fresnel Drag	66
	3.5	The Doppler Effect	67
	3.6	Experiments Designed to Detect the Stationary Ether	71
	3.7	The Trouton-Noble Experiment	71 79
	3.8	The Birth of a New Theory of Relativity	81
	3.9	Experiments on the Unipolar Induction	84
	3.10	The Principle of Relativity and the Theories of Relativity	86
	3.10	Summary	87
		rences	88
4	The S	Special Theory of Relativity and its Empirical Foundations	91
	4.1	Einstein's Motivations for a Theory of Relativity	92
	4.2	The Lorentz Transformations	94
	4.3	The Physical Results of the Special Theory of Relativity	96
		4.3.1 The Doppler Effect in the STR	99
		4.3.2 The Unipolar Phenomena and the STR	101
		4.3.3 Einstein's STR and Thermodynamics	103
		4.3.4 The Empirical Status of the Light Hypothesis	104
	4.4	The General Nature of Experimenters' Interpretations	107
	4.5	The Special Theory of Relativity and Accelerated Frames	108
	4.6	Summary	109
	Refer	rences	111
5	Simu	Itaneity and the Synchronisation of Time	113
	5.1	Introduction	113
	5.2	Galilean Simultaneity	115
	5.3	Einstein's Discussion of Simultaneity in the STR	119
	5.4	Einstein's Fallacy on the Relativity of Simultaneity	121
	5.5	H. Bergson's Critique of Einstein's Relativity	
		of Simultaneity	124
	5.6	The Synchronisation of Time	126
	5.7	Summary	130
	Refer	ences	132
6		Equivalence Principles	133
	6.1	The Universality of Free Fall	134
	6.2	The Equivalence of Inertia and Mass—The Weak	
		Equivalence Principle	135
	6.3	Galileo's Thought Experiment 'Proof' of the UFF	137
	6.4	Einstein's Equivalence Principle	139
	6.5	What are Inertial Frames?	140
	6.6	A Stronger Equivalence Principle	142

Contents xv

	6.7	A Brief Account of Experimental Tests	142
		6.7.1 Space Tests of the UFF and the WEP	145
		6.7.2 Laser Ranging to the Moon and the WEP	146
		6.7.3 Tests of the SEP	147
		6.7.4 The Active and the Passive Gravitational Masses	148
	6.8	The First Applications of the EEP: Prelude to the GTR	149
	6.9	On the Gravitational Origin of the UFF, WEP, and EEP	151
	6.10	Diving Deeper: Equivalent or Identical?	152
	6.11	The Equivalence Principle and the Quantum Theory	152
	6.12	Summary	154
	Refere	ences	154
7	Einste	ein's General Theory of Relativity	157
	7.1	The Genesis and Its Salient Points	158
	7.2	General Theory of Relativity (GTR) as a Theory of Gravity	159
	7.3	The GTR from an Action Principle	163
	7.4	The GTR as the Geometric Theory of Gravity	164
	7.5	Einstein's 'Hole Argument'	169
		7.5.1 Revisiting the Hole Argument	171
	7.6	The GTR and Its Galilean Metrics	172
	7.7	Gravitation and Electrodynamics: A Comparison	175
	7.8	The Achievements of the GTR	176
	7.9	The GTR and Gravitomagnetism	177
	7.10	The GTR and Gravitational Waves	178
	7.11	The Experimental and Observational Tests of the GTR	181
	7.12	The GTR and Mach's Principle	182
	7.13	The GTR and Cosmology	184
	7.14	The Unsolved Riddle of Inertia: The Incompleteness	
		of the GTR	186
	7.15	What Lies Beyond the GTR?	187
	7.16	Summary	188
	Refere	ences	190
8	Our I	Jniverse	193
0	8.1	Our Physical Universe Before 1930	193
	8.2	The Universe as Observed	196
	0.2	8.2.1 The Large Scale Distribution of Matter	196
		8.2.2 The Expansion of the Universe	197
		8.2.3 The Velocity-Distance Relation From	197
		Observations	199
	8.3	Einstein's Cosmological Constant	201
	0.3	8.3.1 The Cosmological Principle and the Expansion	201
		8.3.2 The Concept of a 'Critical Density'	202
		8.3.3 The Measurements of the Deceleration	200
		Parameter Parameter	206
		i arameter	~00

xvi Contents

	8.4	The Reason Behind the Expansion of the Universe	207
	8.5	The Cosmic Microwave Background Radiation	210
	8.6	The Large Scale Distribution of Matter	210
		8.6.1 The Dark Matter	211
		8.6.2 The Curvature of the Universe	213
		8.6.3 The Dark Energy	214
		8.6.4 The Dark Energy and the Quantum Vacuum	215
		8.6.5 An Interpretation of the Critical Density	216
	8.7	The Interpretation of the Expansion of the Universe	217
	8.8	The 'Absolute' Features of Our Universe	219
	8.9	Summary	220
	Refere	ences	221
9	Time l	Dilation and the Twin-Paradox	223
	9.1	Cautionary Introduction	223
	9.2	Time Dilation in Lorentz-Poincaré Relativity	225
	9.3	Time Dilation in Einstein's STR	225
	9.4	Langevin's Twin-Paradox	226
	9.5	The Real Twin-Paradox in the STR	229
	9.6	The Predictions for Motional Time Dilation	230
	9.7	Experiments on Motional Time Dilation	235
	9.1	9.7.1 Time Dilation of Unstable Particles	235
		9.7.2 Experiments on Atomic Systems	237
		9.7.3 Experiments on Atomic Systems	231
		Clocks	238
	9.8	The Hafele-Keating Experiment	239
	9.9	Popular 'Resolutions' of the Twin-Paradox	243
	7.7	9.9.1 Langevin's Solution in the Acceleration	244
		9.9.2 Resolution Sans Acceleration	244
	9.10	Einstein's Gravitational Resolution of the Paradox	247
	9.11	Summary	250
		ences	252
	recrere		232
Par	t II T	he New Physical World of Cosmic Relativity	
10	Cosmi	ic Relativity—The Theory and Its Primary Fundamental	
10		is	255
	10.1	The Universe that Determines the Physics of Relativity	256
	10.2	A Hypothetical Scenario in Electrodynamics	257
	10.3	A Theory of Relativity and Dynamics Without Postulates	260
	10.4	Physics in the Gravitationally Charged Universe	261
	10.5	The Gravitational Foundation of Cosmic Relativity	262
	10.6	The Primary Results in Cosmic Relativity	264
	10.0	10.6.1 The Modification of Duration and Distance	264
		10.6.2 Interpretation in Terms of the Gravitational	
		Potentials	266

Contents xvii

		10.6.3	The Time Dilation of Physical Clocks	267
		10.6.4	Cosmic Relativity and the Principle of Relativity	268
		10.6.5	The Propagation of Light	269
	10.7	Cosmic	Relativity and Dynamics	270
		10.7.1	Laws of Dynamics: Newton's Law of Motion	270
	10.8	Cosmic	Relativity and the Origin of Inertia	272
		10.8.1	Cosmic Relativity and the Inertial Forces	273
		10.8.2	The Centrifugal Force	273
		10.8.3	The Coriolis Force	274
	10.9	The Twi	st in Tropical Cyclones	277
	10.10	Cosmic	Relativity and the Principles of Equivalence	278
		10.10.1	Newton's Law and the WEP	280
		10.10.2	'Weightlessness' in Free Fall and the EEP	280
		10.10.3	Two Kinds of Gravitational Forces	
			and the Geodesic Principle	283
		10.10.4	The Equivalence Principle and Universality	
			of Free Fall	284
	10.11	The EEP	and the Time Dilation of Clocks in an Accelerated	
		Frame .		285
	10.12	Clocks a	nd Time Dilation in Cosmic Relativity	286
		10.12.1	Time Dilation in the STR	287
		10.12.2	Motional Time Dilation in Cosmic Relativity	287
		10.12.3	Synchronisation of Clocks in Cosmic Relativity	289
		10.12.4	The Addition of Velocities in Cosmic Relativity	290
	10.13	Cosmic	Relativity and the Electrodynamics of Moving	
			, , , , , , , , , , , , , , , , , , , ,	291
		10.13.1	The Doppler Shift	292
		10.13.2	The Optical Aberration and the Fresnel Drag	293
	10.14	The Uni	polar Induction	294
	10.15	Cosmic	Relativity and the Spin Angular Momentum	301
	10.16		y	302
	Refere		·	305
4.4				207
11			perimental Tests of Cosmic Relativity	307 309
	11.1		ure of Propagation of Light	309
		11.1.1	Past Experiments on the One-Way Propagation	211
	11.0	T D.1	of Light ative Velocity of Light—The Prediction	311
	11.2			314
	11.3		Relative Velocity of Light—A Prelude to a Test	315
		11.3.1	The Propagation of Light in a Moving Frame	316
		11.3.2	A Simple Demonstration of the Conflict	220
		m	Between the PoR and the Light Hypothesis	320
	11.4		eriment on the One-Way Relative Velocity	221
		of Light		321

xviii Contents

	11.5	Motional Time Dilation: The Predictions	325
	11.6	Cosmic Relativity and Clock Synchronisation	326
	11.7	Experimental Tests of Time Dilation: Atomic Clocks	327
	11.8	Experimental Tests of Time Dilation: GNSS and GPS	329
		11.8.1 Time Dilations in the GNSS Satellites	329
		11.8.2 The GNSS Mystery Created by the Galilean	
		Propagation of Light	331
	11.9	The Absence of a Relative Time Dilation in Accelerated	
		Frames	334
	11.10	The One-Way Relative Velocity of Light in Rotating	
		Frames	335
		11.10.1 An Early History of the Relevant Ideas	336
		11.10.2 The Experiments by G. Sagnac	337
		11.10.3 The Michelson-Gale Experiment	339
		11.10.4 The Proof of the Galilean Nature of a Rotating	
		Frame	340
	11.11	Lorentz's Relativity, Einstein's Relativity and Cosmic	
		Relativity	341
	11.12	Summary	343
	Refere	nces	345
12	Cosmi	c Relativity and Quantum Dynamics	347
	12.1	Cosmic Relativity and Quantum Dynamics	347
	12.2	The True Nature of the Schrödinger Equation	349
	12.3	The 'Law of Motion' in the Microscopic Physical World	356
	12.4	The Quantum Interference of Single Particles	359
	12.5	The Continuity Equation and the Schrödinger Equation	360
	12.6	L. de Broglie's Non-existent Matter-Waves	362
	12.7	The Minuteness of the Quantum Zero-Point Energy	364
	12.8	The Dirac Equation and Relativity	364
	12.9	Cosmic Relativity and Quantum Mechanics	368
	12.10	Summary	369
	Refere	nces	370
13	Cosmi	c Gravity and the Quantum Spin	373
	13.1	The Physical Meaning of Spin	376
	13.2	Spin as the Fundamental Gravitomagnetic Moment	377
	13.3	Cosmic Gravitational Effects on Spin	378
		13.3.1 Emphasising the 'Spin-Phase Puzzle'	380
		13.3.2 The Thomas Precession in Atoms	
		and the Spectral Fine Structure	382
		13.3.3 Geometric Phases and Cosmic Gravity	384
	13.4	Spin Transport in Chiral Molecules and Spintronics	388

Contents xix

	13.5	Bosons, Fermions, and the Proof of the Spin-Statistics	
		Connection	392
		13.5.1 The Dawn of the Spin-Statistics Connection	393
		13.5.2 Pauli's Proof and His Inconclusive Tryst	
		with the SSC	394
		13.5.3 Physical Proofs of the Spin-Statistics	
		Connection?	397
	13.6	The Proof of the Spin-Statistics Connection	398
	13.7	Summary	402
		ences	404
14	The O	quantum Hall Effects: Gravity in Condensed Matter	407
	14.1	The Hall Effect	408
	14.2	The Quantum Hall Effect	410
	14.3	The 2-D Dynamics of Electrons in a Magnetic Field	412
	14.5	14.3.1 The Theory of the IQHE Plateaux	414
	14.4	The Fractional Quantum Hall Effect	417
	14.5	The Current Theories of the FQHE	418
	14.6	The Need for a New Unified Theory	421
	14.0	14.6.1 Summary of the Reasons for a New Theory	422
	14.7	New Physics Input to the QHE—Cosmic Gravity	424
	14.7	14.7.1 The Quantum Degeneracy of the Landau Levels	424
	14.8	The Integrated Theory of the Quantum Hall Effects	427
	14.0	14.8.1 FQHE Beyond the Filling Factor $\nu = 1/3$	431
		14.8.1 PQHE Beyond the Fitting Factor $V = 1/3$	431
		14.8.3 The Excitation Energy Gaps	433
	14.9	Electron-Hole Symmetry and the FQHE	434
	14.10		434
	14.10	The Quantum Hall Effects in Graphene	433
		Charge and Thermal Transport by Edge States	440
	14.12 14.13	The Wavefunctions in the QHE	440
		Summary	441
	Refere		443
15		vity and Quantum Entanglement	445
	15.1	The Space-Time Context of the Problem	447
	15.2	Quantum Mechanics of Entanglement	449
	15.3	The EPR Argument of the Incompleteness of Quantum	
		Mechanics	451
	15.4	Measurements of the Quantised Observables	
		of the Microworld	455
		15.4.1 The Correlations in the LHVT	457
	15.5	The Proof of Strict Locality in Quantum Correlations	460
	15.6	Summary	463
	Refere	nces	466

xx Contents

Para	Paradigms Lost and Found		
16.1	The Evolution of the Theories of Dynamics and Relativity	46	
16.2	Completing the Theory of Gravity: Centenary Einstein's		
	Equation	47	
16.3	Physical Absolute Space and Absolute Time	47	
16.4	Is the Cosmic Gravitational Paradigm the Ultimate		
	Foundation?	47	
16.5	Concluding Notes	47	
Refe	rences	47:	

Acronyms

2DEG Two-Dimensional Electron Gas CEE Centenary Einstein's Equation

CF Composite Fermions

CISS Chiral-Induced Spin Selectivity

CMBR Cosmic Microwave Background Radiation

EEP Einstein's Equivalence Principle

EMF Electro-Motive Force

EPR Einstein-Podolsky-Rosen (paper)

FLRW Friedmann-Lemaître-Robertson-Walker (line element)

FQHE Fractional Quantum Hall Effect GNSS Global Navigational Satellite Systems

GPS Global Positioning System
GT Galilean Transformations
GTR General Theory of Relativity
IQHE Integer Quantum Hall Effect
LHVT Local Hidden Variable Theory

LL Landau Level

LLL Lowest Landau Level

LPTR Lorentz-Poincaré Theory of Relativity

LT Lorentz Transformations

MOSFET Metal-Oxide-Semiconductor Field Effect Transistor

PoR Principle of Relativity
QHE Quantum Hall Effect
QM Quantum Mechanics

SEP Strong Equivalence Principle SSC Spin-Statistics Connection STR Special Theory of Relativity UFF Universality of Free Fall WEP Weak Equivalence Principle