

Astronomy & Astrophysics : An Introductory Survey A lecture series by Prof. G. Srinivasan Golden Jubilee Celebration' Event of the Astronomical Society of India

Lecture 19 : Pulsars

Twinkle twinkle little star. In August 1967, Jocelyn Bell, a young student in Cambridge University discovered something that twinkled at radio wavelength. It turned out to be a really 'little star'! It soon emerged that she had made one of the greatest discoveries in astronomy; she had discovered a neutron star. Since then, nearly three thousand neutron stars have been discovered. This lecture explains how a neutron star produces electromagnetic radiation and why it 'pulses'.

The picture on the left is the label of a 1976 music album called 'Unknown Pleasures' by the rock band Joy Division. This artwork was designed by artist Peter Saville, using a data plot of signals from the pulsar CP 1919 (the very object discovered by Jocelyn Bell), by simply reversing the image from black-on-white to white-onblack.

Now, the 'twinkling' in radio wavelength, as detected by astronomers from the Earth, appear like a train of regular pulses. The above image is nothing but a 'stacked plot' of a large number of successive radio pulses. The image was originally created by radio astronomer Harold Craft at the Arecibo Observatory for his 1970 doctoral dissertation as a way to visualize smaller pulses within larger ones with an aim to explain the underlying mechanism of pulsar emission.

The Pulsar Model..

- Energy Emission from a Neutron Star Pacini F., 1967, Nature, 216, 5115
- Rotating Neutron Stars as the Origin of the Pulsating Radio Sources Radhakrishnan V. & Cooke D. J., 1969, ApL, 3, 225
- A Model of Pulsars Sturrock P. A., 1971, ApJ, 164, 529
- *The Nature of Pulsar Radiation* Pacini F. & Rees M. J., 1970, Nature, 226, 622

9 September 2022

Lecture Series Website	: https://astron-soc.in/srini-ana
ASI on Facebook ASI on Instagram ASI on Twitter	: https://www.facebook.com/asi.poec : https://www.instagram.com/publicastronomy : https://twitter.com/asipoec
Prepared by Dr. Sushan Konar	: sushan.konar@gmail.com

Astronomy & Astrophysics : An Introductory Survey

A lecture series by Prof. G. Srinivasan

A 'Golden Jubilee Celebration' Event of the Astronomical Society of India

Lecture 19 : Pulsars

[Supplementary Material : Dr. Sushan Konar]

Basic Textbooks

- *Handbook of Pulsar Astronomy* Lorimer D. R. & Kramer M., 2005, Cambridge University Press
- *Pulsar Astronomy* Lyne A. & Graham-Smith F., 2012, Cambridge University Press

Suggested Problems

- 1. Suppose a spherical body spinning originally at a rate ω_1 with a radius R_1 collapses gravitationally to a radius R_2 , conserving its mass M and angular momentum J. Express the ratios of the new and old spin rates ω_2/ω_1 and the new and old rotational energies E_2/E_1 in terms of the ratio R_1/R_2 (assume the moment of inertia for a homogeneous sphere). By what factor would the core of a star spin faster if it were to collapse from a radius typical of a white dwarf to the dimensions typical of a neutron star? By what factor would the rotational energy increase in such a collapse? Where ultimately does this energy come from?
- 2. A neutron star cannot spin with less than a certain critical period or it will start to shed mass from its equator due to centrifugal force. Consider a neutron star of mass M and radius R. Find the minimum value of the spin-period at the mass-shedding limit.
- 3. Consider a neutron star (a rotating, magnetised conducting sphere of radius 10km and mass $1.4M_{\odot}$). Find the minimum strength of the magnetic field of this neutron star so that the induced electric field in the magnetosphere is able to pull out electrons from the surface.
- 4. Show that the dipolar model of a pulsar can be expressed as follows -

$$I\Omega\dot{\Omega} = -\beta\Omega^4\,,\tag{1}$$

where, I and Ω are the moment of inertia and the angular frequency of the star. Obtain the exact form of β from what has been discussed in the lecture. Can you define a characteristic time of slow-down for a pulsar in terms of Ω and $\dot{\Omega}$? Do you see the connection of this timescale with the characteristic age?

- 5. Find the brightness temperature for X-rays from the Crab pulsar (luminosity 10^{35} erg.s-1), and argue that the particles energies obtained for such temperatures would not be commensurate with X-ray emission.
- 6. A pulsar is observed to have a gamma-ray luminosity of L watts and spin-period of P seconds. Estimate a lower limit of \dot{P} assuming dipolar model of radiation.

9 September 2022